Browse > Article
http://dx.doi.org/10.22246/jikm.2019.40.3.425

Pharmacological Properties of CDBT in Hypoxia-induced Neuronal Cell Injury and Their Underlying Mechanisms  

Park, Sang-kyu (Dept. of Internal Korean Medicine, Dunsan Korean Medicine Hospital of Dae-Jeon University)
Jung, Eun-sun (Dept. of Internal Korean Medicine, Dunsan Korean Medicine Hospital of Dae-Jeon University)
Cha, Ji-yoon (Dept. of Internal Korean Medicine, Dunsan Korean Medicine Hospital of Dae-Jeon University)
Cho, Hyun-kyoung (Dept. of Internal Korean Medicine, Dunsan Korean Medicine Hospital of Dae-Jeon University)
Yoo, Ho-ryong (Dept. of Internal Korean Medicine, Dunsan Korean Medicine Hospital of Dae-Jeon University)
Kim, Yoon-sik (Dept. of Internal Korean Medicine, Dunsan Korean Medicine Hospital of Dae-Jeon University)
Seol, In-chan (Dept. of Internal Korean Medicine, Dunsan Korean Medicine Hospital of Dae-Jeon University)
Publication Information
The Journal of Internal Korean Medicine / v.40, no.3, 2019 , pp. 425-442 More about this Journal
Abstract
Objectives: This study aimed to reveal the pharmacological properties of the newly prescribed herbal mixture, Chenmadansamgamibokhap-tang(CDBT), against hypoxia-induced neuronal cell injury (especially mouse hippocampal neuronal cell line, HT-22 cells) and their corresponding mechanisms. Methods: A cell-based in vitro experiment, in which a hypoxia condition induced neuronal cell death, was performed. Various concentrations of the CDBT were pre-treated to the HT-22 cells for 4 h before 18 h in the hypoxia chamber. The glial cell BV-2 cells were stimulated with $IFN{\gamma}$ and LSP to produce inflammatory cytokines and reactive oxygen species. When the neuronal HT-22 cells were treated with this culture solution, the drug efficacy against neuronal cell death was examined. Results: CDBT showed cytotoxicity in the normal condition of HT-22 cells at a dose of $125{\mu}g/mL$ and showed a protective effect against hypoxia-induced neuronal cell death at a dose of $31.3{\mu}g/mL$. CDBT prevented hypoxia-induced neuronal cell death in a dose-dependent manner in the HT-22 cells by regulating $HIF1{\alpha}$ and cell death signaling. CDBT prevented neuronal cell death signals and DNA fragmentation due to the hypoxia condition. CDBT significantly reduced cellular oxidation, cell death signals, and caspase-3 activities due to microglial cell activations. Moreover, CDBT significantly ameliorated LPS-induced BV-2 cell activation and evoked cellular oxidation through the recovery of redox homeostasis. Conclusions: CDBT cam be considered as a vital therapeutic agent against neuronal cell deaths. Further studies are required to reveal the other functions of CDBT in vivo or in the clinical field.
Keywords
herbal medicine; hypoxia; cell death; neuronal oxidation; HT-22 cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Genovese T, Mazzon E, Paterniti I, Esposito E, Bramanti P, Cuzzocrea S. Modulation of NADPH oxidase activation in cerebral ischemia/reperfusion injury in rats. Brain Res 2011;1372:92-102.   DOI
2 Zhou L, Bondy SC, Jian L, Wen P, Yang F, Luo H, et al. Tanshinone IIA attenuates the cerebral ischemic injury-induced increase in levels of GFAP and of caspases-3 and -8. Neuroscience 2015;288:105-11.   DOI
3 Chen S, Mei S, Luo Y, Wu H, Zhang J, Zhu J. Gasdermin Family: a Promising Therapeutic Target for Stroke. Transl Stroke Res 2018 Dec;9(6):555-63.   DOI
4 Puig B, Brenna S, Magnus T. Molecular Communication of a Dying Neuron in Stroke. Int J Mol Sci 2018;19(9):2834.   DOI
5 Mao XY, Zhou HH, Li X, Liu ZQ. Huperzine A Alleviates Oxidative Glutamate Toxicity in Hippocampal HT22 Cells via Activating BDNF/TrkB-Dependent PI3K/Akt/mTOR Signaling Pathway. Cell Mol Neurobiol 2016;36(6):915-25.   DOI
6 Song J, Park J, Oh Y, Lee JE. Glutathione suppresses cerebral infarct volume and cell death after ischemic injury: involvement of FOXO3 inactivation and Bcl2 expression. Oxid Med Cell Longev 2015;2015:426069.   DOI
7 Xu Y, Wang Y, Wang G, Ye X, Zhang J, Cao G, et al. YiQiFuMai Powder Injection Protects against Ischemic Stroke via Inhibiting Neuronal Apoptosis and PKCdelta/Drp1-Mediated Excessive Mitochondrial Fission. Oxid Med Cell Longev 2017;2017:1832093.   DOI
8 Nationwide College of Korean Medicine Faculty Council of Cardiology Internal Medicine. Cardiovascular and Neurological Medicine in Korean Medicine I. Seoul: Goonja; 2010, p. 404-15.
9 Chai L, Guo H, Li H, Wang S, Wang YL, Shi F, et al. Scutellarin and caffeic acid ester fraction, active components of Dengzhanxixin injection, upregulate neurotrophins synthesis and release in hypoxia/reoxygenation rat astrocytes. J Ethnopharmacol 2013;150(1):100-7.   DOI
10 Kamal AA, Gomaa A, el Khafif M, Hammad AS. Plasma lipid peroxides among workers exposed to silica or asbestos dusts. Environ Res 1989;49(2):173-80.   DOI
11 Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959;82(1):70-7.   DOI
12 Wheeler CR, Salzman JA, Elsayed NM, Omaye ST, Korte DW, Jr. Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem 1990;184(2):193-9.   DOI
13 Chhunchha B, Fatma N, Kubo E, Rai P, Singh SP, Singh DP. Curcumin abates hypoxia-induced oxidative stress based-ER stress-mediated cell death in mouse hippocampal cells (HT22) by controlling Prdx6 and NF-kappaB regulation. Am J Physiol Cell Physiol 2013;304(7):636-55.   DOI
14 O'Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 2010;376(9735):112-23.   DOI
15 Koh HS, Chang CY, Jeon SB, Yoon HJ, Ahn YH, Kim HS, et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat Commun 2015;6:6340.   DOI
16 von Sarnowski B, Putaala J, Grittner U, Gaertner B, Schminke U, Curtze S, et al. Lifestyle risk factors for ischemic stroke and transient ischemic attack in young adults in the Stroke in Young Fabry Patients study. Stroke 2013;44(1):119-25.   DOI
17 Alturkustani M, Ang LC, Ramsay D. Pathology of toxic leucoencephalopathy in drug abuse supports hypoxic-ischemic pathophysiology/etiology. Neuropathology 2017;37(4):321-8.   DOI
18 Galinsky R, Lear CA, Dean JM, Wassink G, Dhillon SK, Fraser M, et al. Complex interactions between hypoxia-ischemia and inflammation in preterm brain injury. Dev Med Child Neurol 2018;60(2):126-33.   DOI
19 Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet 2008;371(9624):1612-23.   DOI
20 Winek K, Engel O, Koduah P, Heimesaat MM, Fischer A, Bereswill S, et al. Depletion of Cultivatable Gut Microbiota by Broad-Spectrum Antibiotic Pretreatment Worsens Outcome After Murine Stroke. Stroke 2016;47(5):1354-63.   DOI
21 Paraskevas KI. Secondary prevention of stroke. Lancet 2008;372(9643):1036.   DOI
22 Lee JC, Kim WK. Aging and Stroke. Kor J Gerontol 2006;16:11-6.
23 Li P, Shen M, Gao F, Wu J, Zhang J, Teng F, et al. An Antagomir to MicroRNA-106b-5p Ameliorates Cerebral Ischemia and Reperfusion Injury in Rats Via Inhibiting Apoptosis and Oxidative Stress. Mol Neurobiol 2017;54(4):2901-21.   DOI
24 Jung, LS, He X, Song C, Ma CJ, Lee HY, Ahn J. Antioxidant, antibiofilm, and anticholinesterase activities of fermented Deodeok (Codonopsis lanceolata) extracts. Food Sci Biotechnol 2012;21(5):1413-9.   DOI
25 Tsai HD, Wu JS, Kao MH, Chen JJ, Sun GY, Ong WY, et al. Clinacanthus nutans Protects Cortical Neurons Against Hypoxia-Induced Toxicity by Downregulating HDAC1/6. Neuromolecular Med 2016;18(3):274-82.   DOI
26 Zhang Q, Qian Z, Pan L, Li H, Zhu H. Hypoxiainducible factor 1 mediates the anti-apoptosis of berberine in neurons during hypoxia/ischemia. Acta Physiol Hung 2012;99(3):311-23.   DOI
27 Jang JH, Son Y, Kang SS, Bae CS, Kim JC, Kim SH, et al. Neuropharmacological potential of gastrodia elata blume and its components. Evid Based Complement Alternat Med 2015;2015:309261.
28 Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life sci 2004;74(8):969-85.   DOI
29 Wang YJ, Liu YH, Riao RX. Protective effect of tanshinone IIA on neurocyte apoptosis in rats with hypoxic ischemic brain damage and its mechanism. Chin Pharmaco Bull 2015;31(3):443-4.
30 Li Y, Wang L, Sun L, Chen J, Li HY, Wang C, et al. Effect of astragalus injection on the expression of VEGF and VEGF2 in rats with cerebral ischemia reperfusion injury. Chin Integrat Med Cardio-/Cerebrovascular Dis 2016;14(1):25-8.
31 Lee JS, Kim HG, Han JM, Lee JS, Son SW, Ahn YC, et al. Myelophil ameliorates brain oxidative stress in mice subjected to restraint stress. Prog Neuropsychopharmacol Biol Psychiatry 2012;39(2):339-47.   DOI
32 Zhang YJ, Wu L, Zhang QL, Li J, Yin FX, Yuan Y. Pharmacokinetics of phenolic compounds of Danshen extract in rat blood and brain by microdialysis sampling. J Ethnopharmacol 2011;136(1):129-36.   DOI
33 Kim HG, Lee JS, Choi MK, Han JM, Son CG. Ethanolic extract of Astragali radix and Salviae radix prohibits oxidative brain injury by psycho-emotional stress in whisker removal rat model. PLoS One 2014;9(5):e98329.   DOI
34 Kim HG, Lee JS, Han JM, Lee JS, Choi MK, Son SW, et al. Myelophil attenuates brain oxidative damage by modulating the hypothalamus-pituitaryadrenal (HPA) axis in a chronic cold-stress mouse model. J Ethnopharmacol 2013;148(2):505-14.   DOI
35 Wong SB, Hung WC, Min MY. The Role of Gastrodin on Hippocampal Neurons after N-Methyl-D-Aspartate Excitotoxicity and Experimental Temporal Lobe Seizures. Chin J Physiol 2016;59(3):156-64.   DOI
36 Shin N, Kim HG, Shin HJ, Kim S, Kwon HH, Baek H, et al. Uncoupled Endothelial Nitric Oxide Synthase Enhances p-Tau in Chronic Traumatic Encephalopathy Mouse Model. Antioxid Redox Signal 2019;30(13):1601-20.   DOI
37 Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 1982;126(1):131-8.   DOI
38 Skovira JW, Wu J, Matyas JJ, Kumar A, Hanscom M, Kabadi SV, et al. Cell cycle inhibition reduces inflammatory responses, neuronal loss, and cognitive deficits induced by hypobaria exposure following traumatic brain injury. J Neuroinflammation 2016;13(1):299.   DOI
39 Liu Y, Eaton ED, Wills TE, McCann SK, Antonic A, Howells DW. Human Ischaemic Cascade Studies Using SH-SY5Y Cells: a Systematic Review and Meta-Analysis. Transl Stroke Res 2018;9(6):564-74.   DOI
40 Shi X, Yu W, Yang T, Liu W, Zhao Y, Sun Y, et al. Panax notoginseng saponins provide neuroprotection by regulating NgR1/RhoA/ROCK2 pathway expression, in vitro and in vivo. J Ethnopharmacol 2016;190:301-12.   DOI
41 Braun S, Liebetrau W, Berning B, Behl C. Dexamethasone-enhanced sensitivity of mouse hippocampal HT22 cells for oxidative stress is associated with the suppression of nuclear factor-kappaB. Neurosci Lett 2000;295(3):101-4.   DOI
42 Floyd RA. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 1999;222(3):236-45.   DOI
43 Herbert V, Shaw S, Jayatilleke E, Stopler-Kasdan T. Most free-radical injury is iron-related: it is promoted by iron, hemin, holoferritin and vitamin C, and inhibited by desferoxamine and apoferritin. Stem Cells 1994;12(3):289-303.   DOI
44 Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018;98(2):813-80.   DOI
45 Zhang J, An SJ, Fu JQ, Liu P, Shao TM, Li M, et al. Mixed Aqueous Extract of Salvia Miltiorrhiza Reduces Blood Pressure through Inhibition of Vascular Remodelling and Oxidative Stress in Spontaneously Hypertensive Rats. Cell Physiol Biochem 2016;40(1-2):347-60.   DOI