Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0100

HIF-1α-Dependent Induction of Carboxypeptidase A4 and Carboxypeptidase E in Hypoxic Human Adipose-Derived Stem Cells  

Moon, Yunwon (Department of Life Science, University of Seoul)
Moon, Ramhee (Department of Life Science, University of Seoul)
Roh, Hyunsoo (Department of Life Science, University of Seoul)
Chang, Soojeong (Department of Life Science, University of Seoul)
Lee, Seongyeol (Department of Life Science, University of Seoul)
Park, Hyunsung (Department of Life Science, University of Seoul)
Abstract
Hypoxia induces the expression of several genes through the activation of a master transcription factor, hypoxia-inducible factor (HIF)-1α. This study shows that hypoxia strongly induced the expression of two carboxypeptidases (CP), CPA4 and CPE, in an HIF-1α-dependent manner. The hypoxic induction of CPA4 and CPE gene was accompanied by the recruitment of HIF-1α and upregulation in the active histone modification, H3K4me3, at their promoter regions. The hypoxic responsiveness of CPA4 and CPE genes was observed in human adipocytes, human adipose-derived stem cells, and human primary fibroblasts but not mouse primary adipocyte progenitor cells. CPA4 and CPE have been identified as secreted exopeptidases that degrade and process other secreted proteins and matrix proteins. This finding suggests that hypoxia changes the microenvironment of the obese hypoxic adipose tissue by inducing the expression of not only adipokines but also peptidases such as CPA4 and CPE.
Keywords
carboxypeptidase A4; carboxypeptidase E; human adipose-derived stem cells; hypoxia; hypoxia-inducible factor-$1{\alpha}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baboota, R.K., Sarma, S.M., Boparai, R.K., Kondepudi, K.K., Mantri, S., and Bishnoi, M. (2015). Microarray based gene expression analysis of murine brown and subcutaneous adipose tissue: significance with human. PLoS One 10, e0127701.   DOI
2 Cawley, N.X., Rathod, T., Young, S., Lou, H., Birch, N., and Loh, Y.P. (2016). Carboxypeptidase E and secretogranin III coordinately facilitate efficient sorting of proopiomelanocortin to the regulated secretory pathway in AtT20 cells. Mol. Endocrinol. 30, 37-47.   DOI
3 Che, F.Y., Yan, L., Li, H., Mzhavia, N., Devi, L.A., and Fricker, L.D. (2001). Identification of peptides from brain and pituitary of Cpefat/Cpefat mice. Proc. Natl. Acad. Sci. U. S. A. 98, 9971-9976.   DOI
4 Chusyd, D.E., Wang, D., Huffman, D.M., and Nagy, T.R. (2016). Relationships between rodent white adipose fat pads and human white adipose fat depots. Front. Nutr. 3, 10.
5 Freshney, R.I. (2000). Culture of Animal Cells: A Manual of Basic Technique (4th Edition) (New York: Wiley).
6 Fricker, L.D., McKinzie, A.A., Sun, J., Curran, E., Qian, Y., Yan, L., Patterson, S.D., Courchesne, P.L., Richards, B., Levin, N., et al. (2000). Identification and characterization of proSAAS, a granin-like neuroendocrine peptide precursor that inhibits prohormone processing. J. Neurosci. 20, 639-648.   DOI
7 Fricker, L.D. and Snyder, S.H. (1983). Purification and characterization of enkephalin convertase, an enkephalin-synthesizing carboxypeptidase. J. Biol. Chem. 258, 10950-10955.   DOI
8 Gorlach, A., Dimova, E.Y., Petry, A., Martinez-Ruiz, A., Hernansanz-Agustin, P., Rolo, A.P., Palmeira, C.M., and Kietzmann, T. (2015). Reactive oxygen species, nutrition, hypoxia and diseases: problems solved? Redox Biol. 6, 372-385.   DOI
9 Handa, T., Katayama, A., Yokobori, T., Yamane, A., Fujii, T., Obayashi, S., Kurozumi, S., Kawabata-Iwakawa, R., Gombodorj, N., Nishiyama, M., et al. (2019). Carboxypeptidase A4 accumulation is associated with an aggressive phenotype and poor prognosis in triple-negative breast cancer. Int. J. Oncol. 54, 833-844.
10 Ji, L., Wu, H.T., Qin, X.Y., and Lan, R. (2017). Dissecting carboxypeptidase E: properties, functions and pathophysiological roles in disease. Endocr. Connect. 6, R18-R38.   DOI
11 Lindgren, C.M., Heid, I.M., Randall, J.C., Lamina, C., Steinthorsdottir, V., Qi, L., Speliotes, E.K., Thorleifsson, G., Willer, C.J., Herrera, B.M., et al. (2009). Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution. PLoS Genet. 5, e1000508.   DOI
12 Lee, H.Y., Lee, T., Lee, N., Yang, E.G., Lee, C., Lee, J., Moon, E.Y., Ha, J., and Park, H. (2011). Src activates HIF-1α not through direct phosphorylation of HIF-1α specific prolyl-4 hydroxylase 2 but through activation of the NADPH oxidase/Rac pathway. Carcinogenesis 32, 703-712.   DOI
13 Lee, S., Lee, J., Chae, S., Moon, Y., Lee, H.Y., Park, B., Yang, E.G., Hwang, D., and Park, H. (2017). Multi-dimensional histone methylations for coordinated regulation of gene expression under hypoxia. Nucleic Acids Res. 45, 11643-11657.   DOI
14 Lee, Y.S., Kim, J.W., Osborne, O., Oh, D.Y., Sasik, R., Schenk, S., Chen, A., Chung, H., Murphy, A., Watkins, S.M., et al. (2014). Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell 157, 1339-1352.   DOI
15 Makki, K., Froguel, P., and Wolowczuk, I. (2013). Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm. 2013, 139239.   DOI
16 Moon, Y., Choi, S.M., Chang, S., Park, B., Lee, S., Lee, M.O., Choi, H.S., and Park, H. (2015). Chenodeoxycholic acid reduces hypoxia inducible factor-1α protein and its target genes. PLoS One 10, e0130911.   DOI
17 Pan, H., Pan, J., Ji, L., Song, S., Lv, H., Yang, Z., and Guo, Y. (2019). Carboxypeptidase A4 promotes cell growth via activating STAT3 and ERK signaling pathways and predicts a poor prognosis in colorectal cancer. Int. J. Biol. Macromol. 138, 125-134.   DOI
18 Sun, L., Burnett, J., Guo, C., Xie, Y., Pan, J., Yang, Z., Ran, Y., and Sun, D. (2016a). CPA4 is a promising diagnostic serum biomarker for pancreatic cancer. Am. J. Cancer Res. 6, 91-96.
19 Park, Y.K., Park, B., Lee, S., Choi, K., Moon, Y., and Park, H. (2013). Hypoxia-inducible factor-2α-dependent hypoxic induction of Wnt10b expression in adipogenic cells. J. Biol. Chem. 288, 26311-26322.   DOI
20 Sapio, M.R. and Fricker, L.D. (2014). Carboxypeptidases in disease: insights from peptidomic studies. Proteomics Clin. Appl. 8, 327-337.   DOI
21 Sun, L., Cao, J., Guo, C., Burnett, J., Yang, Z., Ran, Y., and Sun, D. (2017). Associations of carboxypeptidase 4 with ALDH1A1 expression and their prognostic value in esophageal squamous cell carcinoma. Dis. Esophagus 30, 1-5.
22 Sun, L., Guo, C., Yuan, H., Burnett, J., Pan, J., Yang, Z., Ran, Y., Myers, I., and Sun, D. (2016b). Overexpression of carboxypeptidase A4 (CPA4) is associated with poor prognosis in patients with gastric cancer. Am. J. Transl. Res. 8, 5071-5075.
23 Vohl, M.C., Sladek, R., Robitaille, J., Gurd, S., Marceau, P., Richard, D., Hudson, T.J., and Tchernof, A. (2004). A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obes. Res. 12, 1217-1222.   DOI
24 Zhang, H., Hao, C., Wang, H., Shang, H., and Li, Z. (2019). Carboxypeptidase A4 promotes proliferation and stem cell characteristics of hepatocellular carcinoma. Int. J. Exp. Pathol. 100, 133-138.   DOI