Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0126

Long Noncoding RNA Expression Profiling Reveals Upregulation of Uroplakin 1A and Uroplakin 1A Antisense RNA 1 under Hypoxic Conditions in Lung Cancer Cells  

Byun, Yuree (Graduate School of Biotechnology, Kyung Hee University)
Choi, Young-Chul (Graduate School of Biotechnology, Kyung Hee University)
Jeong, Yongsu (Graduate School of Biotechnology, Kyung Hee University)
Yoon, Jaeseung (Graduate School of Biotechnology, Kyung Hee University)
Baek, Kwanghee (Graduate School of Biotechnology, Kyung Hee University)
Abstract
Hypoxia plays important roles in cancer progression by inducing angiogenesis, metastasis, and drug resistance. However, the effects of hypoxia on long noncoding RNA (lncRNA) expression have not been clarified. Herein, we evaluated alterations in lncRNA expression in lung cancer cells under hypoxic conditions using lncRNA microarray analyses. Among 40,173 lncRNAs, 211 and 113 lncRNAs were up- and downregulated, respectively, in both A549 and NCI-H460 cells. Uroplakin 1A (UPK1A) and UPK1A-antisense RNA 1 (AS1), which showed the highest upregulation under hypoxic conditions, were selected to investigate the effects of UPK1A-AS1 on the expression of UPK1A and the mechanisms of hypoxia-inducible expression. Following transfection of cells with small interfering RNA (siRNA) targeting hypoxia-inducible factor 1α (HIF-1α), the hypoxia-induced expression of UPK1A and UPK1A-AS1 was significantly reduced, indicating that HIF-1α played important roles in the hypoxia-induced expression of these targets. After transfection of cells with UPK1A siRNA, UPK1A and UPK1A-AS1 levels were reduced. Moreover, transfection of cells with UPK1A-AS1 siRNA downregulated both UPK1A-AS1 and UPK1A. RNase protection assays demonstrated that UPK1A and UPK1A-AS1 formed a duplex; thus, transfection with UPK1A-AS1 siRNA decreased the RNA stability of UPK1A. Overall, these results indicated that UPK1A and UPK1A-AS1 expression increased under hypoxic conditions in a HIF-1α-dependent manner and that formation of a UPK1A/UPK1A-AS1 duplex affected RNA stability, enabling each molecule to regulate the expression of the other.
Keywords
hypoxia; hypoxia-inducible factor $1{\alpha}$; microarray; uroplakin 1A; uroplakin 1A antisense RNA 1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hall, G.D., Weeks, R.J., Olsburgh, J., Southgate, J., Knowles, M.A., Selby, P.J., and Chester, J.D. (2005). Transcriptional control of the human urothelialspecific gene, uroplakin Ia. Biochim. Biophys. Acta 1729, 126-134.   DOI
2 Ke, Q. and Costa, M. (2006). Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 70, 1469-1480.   DOI
3 Zheng, Y., Wang, D.D., Wang, W., Pan, K., Huang, C.Y., Li, Y.F., Wang, Q.J., Yuan, S.Q., Jiang, S.S., Qiu, H.B., et al. (2014). Reduced expression of uroplakin 1A is associated with the poor prognosis of gastric adenocarcinoma patients. PLoS One 9, e93073.   DOI
4 Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732.   DOI
5 Zhou, C., Ye, L., Jiang, C., Bai, J., Chi, Y., and Zhang, H. (2015). Long noncoding RNA HOTAIR, a hypoxia-inducible factor-1α activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion in non-small cell lung cancer. Tumour Biol. 36, 9179-9188.   DOI
6 Zhu, G., Wang, S., Chen, J., Wang, Z., Liang, X., Wang, X., Jiang, J., Lang, J., and Li, L. (2017). Long noncoding RNA HAS2-AS1 mediates hypoxiainduced invasiveness of oral squamous cell carcinoma. Mol. Carcinog. 56, 2210-2222.   DOI
7 Zhu, H., Tang, Y., Zhang, X., Jiang, X., Wang, Y., Gan, Y., and Yang, J. (2015). Downregulation of UPK1A suppresses proliferation and enhances apoptosis of bladder transitional cell carcinoma cells. Med. Oncol. 32, 84.   DOI
8 Shih, J.W. and Kung, H.J. (2017). Long non-coding RNA and tumor hypoxia: new players ushered toward an old arena. J. Biomed. Sci. 24, 53.   DOI
9 Smith, J., Sen, S., Weeks, R.J., Eccles, M.R., and Chatterjee, A. (2020). Promoter DNA hypermethylation and paradoxical gene activation. Trends Cancer 6, 392-406.   DOI
10 Song, Y., Wang, H., Zou, X.J., Zhang, Y.X., Guo, Z.Q., Liu, L., Wu, D.H., and Zhang, D.Y. (2020). Reciprocal regulation of HIF-1α and Uroplakin 1A promotes glycolysis and proliferation in Hepatocellular Carcinoma. J. Cancer 11, 6737-6747.   DOI
11 Guillaumet-Adkins, A., Richter, J., Odero, M.D., Sandoval, J., Agirre, X., Catala, A., Esteller, M., Prosper, F., Calasanz, M.J., Buno, I., et al. (2014). Hypermethylation of the alternative AWT1 promoter in hematological malignancies is a highly specific marker for acute myeloid leukemias despite high expression levels. J. Hematol. Oncol. 7, 4.   DOI
12 Cabili, M.N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., and Rinn, J.L. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915-1927.   DOI
13 Elvidge, G.P., Glenny, L., Appelhoff, R.J., Ratcliffe, P.J., Ragoussis, J., and Gleadle, J.M. (2006). Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J. Biol. Chem. 281, 15215-15226.   DOI
14 Faghihi, M.A., Modarresi, F., Khalil, A.M., Wood, D.E., Sahagan, B.G., Morgan, T.E., Finch, C.E., St Laurent, G., 3rd, Kenny, P.J., and Wahlestedt, C. (2008). Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med. 14, 723-730.   DOI
15 Fiedler, J., Breckwoldt, K., Remmele, C.W., Hartmann, D., Dittrich, M., Pfanne, A., Just, A., Xiao, K., Kunz, M., Müller, T., et al. (2015). Development of long noncoding RNA-based strategies to modulate tissue vascularization. J. Am. Coll. Cardiol. 66, 2005-2015.   DOI
16 Gomez-Maldonado, L., Tiana, M., Roche, O., Prado-Cabrero, A., Jensen, L., Fernandez-Barral, A., Guijarro-Munoz, I., Favaro, E., Moreno-Bueno, G., Sanz, L., et al. (2015). EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination. Oncogene 34, 2609-2620.   DOI
17 Bach, D.H. and Lee, S.K. (2018). Long noncoding RNAs in cancer cells. Cancer Lett. 419, 152-166.   DOI
18 Chang, Y.N., Zhang, K., Hu, Z.M., Qi, H.X., Shi, Z.M., Han, X.H., Han, Y.W., and Hong, W. (2016). Hypoxia-regulated lncRNAs in cancer. Gene 575, 1-8.   DOI
19 Chatterjee, A., Stockwell, P.A., Ahn, A., Rodger, E.J., Leichter, A.L., and Eccles, M.R. (2017). Genome-wide methylation sequencing of paired primary and metastatic cell lines identifies common DNA methylation changes and a role for EBF3 as a candidate epigenetic driver of melanoma metastasis. Oncotarget 8, 6085-6101.   DOI
20 Autuoro, J.M., Pirnie, S.P., and Carmichael, G.G. (2014). Long noncoding RNAs in imprinting and X chromosome inactivation. Biomolecules 4, 76-100.   DOI
21 Hu, S., Wang, X., and Shan, G. (2016). Insertion of an Alu element in a lncRNA leads to primate-specific modulation of alternative splicing. Nat. Struct. Mol. Biol. 23, 1011-1019.   DOI
22 Kong, K.L., Kwong, D.L., Fu, L., Chan, T.H., Chen, L., Liu, H., Li, Y., Zhu, Y.H., Bi, J., Qin, Y.R., et al. (2010). Characterization of a candidate tumor suppressor gene uroplakin 1A in esophageal squamous cell carcinoma. Cancer Res. 70, 8832-8841.   DOI
23 He, Y., Kong, F., Du, H., and Wu, M. (2014). Decreased expression of uroplakin Ia is associated with colorectal cancer progression and poor survival of patients. Int. J. Clin. Exp. Pathol. 7, 5031-5037.
24 Hong, S.S., Lee, H., and Kim, K.W. (2004). HIF-1alpha: a valid therapeutic target for tumor therapy. Cancer Res. Treat. 36, 343-353.   DOI
25 Hu, Y., Liu, J., and Huang, H. (2013). Recent agents targeting HIF-1α for cancer therapy. J. Cell. Biochem. 114, 498-509.   DOI
26 Huang, B., Song, J.H., Cheng, Y., Abraham, J.M., Ibrahim, S., Sun, Z., Ke, X., and Meltzer, S.J. (2016). Long non-coding antisense RNA KRT7-AS is activated in gastric cancers and supports cancer cell progression by increasing KRT7 expression. Oncogene 35, 4927-4936.   DOI
27 Iyer, M.K., Niknafs, Y.S., Malik, R., Singhal, U., Sahu, A., Hosono, Y., Barrette, T.R., Prensner, J.R., Evans, J.R., Zhao, S., et al. (2015). The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47, 199-208.   DOI
28 Jiang, B.H., Rue, E., Wang, G.L., Roe, R., and Semenza, G.L. (1996). Dimerization, DNA binding, and transactivation properties of hypoxiainducible factor 1. J. Biol. Chem. 271, 17771-17778.   DOI
29 Jones, P.A. and Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science 293, 1068-1070.   DOI
30 Kanduri, C. (2016). Long noncoding RNAs: lessons from genomic imprinting. Biochim. Biophys. Acta 1859, 102-111.   DOI
31 Yu, W., Gius, D., Onyango, P., Muldoon-Jacobs, K., Karp, J., Feinberg, A.P., and Cui, H. (2008). Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202-206.   DOI
32 Guilleret, I., Yan, P., Grange, F., Braunschweig, R., Bosman, F.T., and Benhattar, J. (2002). Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int. J. Cancer 101, 335-341.   DOI
33 Yap, K.L., Li, S., Munoz-Cabello, A.M., Raguz, S., Zeng, L., Mujtaba, S., Gil, J., Walsh, M.J., and Zhou, M.M. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38, 662-674.   DOI
34 Yu, T., Tang, B., and Sun, X. (2017). Development of inhibitors targeting hypoxia-inducible factor 1 and 2 for cancer therapy. Yonsei Med. J. 58, 489-496.   DOI
35 Yuan, S., Liu, Q., Hu, Z., Zhou, Z., Wang, G., Li, C., Xie, W., Meng, G., Xiang, Y., Wu, N., et al. (2018). Long non-coding RNA MUC5B-AS1 promotes metastasis through mutually regulating MUC5B expression in lung adenocarcinoma. Cell Death Dis. 9, 450.   DOI
36 Zhang, P., Dong, Q., Zhu, H., Li, S., Shi, L., and Chen, X. (2019). Long noncoding antisense RNA GAS6-AS1 supports gastric cancer progression via increasing GAS6 expression. Gene 696, 1-9.   DOI
37 Du, F., Guo, T., and Cao, C. (2020). Restoration of UPK1A-AS1 expression suppresses cell proliferation, migration, and invasion in esophageal squamous cell carcinoma cells partially by sponging microRNA-1248. Cancer Manag. Res. 12, 2653-2662.   DOI
38 Klose, R.J. and Bird, A.P. (2006). Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89-97.   DOI
39 Kim, S., Lee, U.J., Kim, M.N., Lee, E.J., Kim, J.Y., Lee, M.Y., Choung, S., Kim, Y.J., and Choi, Y.C. (2008). MicroRNA miR-199a* regulates the MET protooncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J. Biol. Chem. 283, 18158-18166.   DOI
40 Kimura, T., Jiang, S., Nishizawa, M., Yoshigai, E., Hashimoto, I., Nishikawa, M., Okumura, T., and Yamada, H. (2013). Stabilization of human interferon-α1 mRNA by its antisense RNA. Cell. Mol. Life Sci. 70, 1451-1467.   DOI
41 Mimura, I., Hirakawa, Y., Kanki, Y., Kushida, N., Nakaki, R., Suzuki, Y., Tanaka, T., Aburatani, H., and Nangaku, M. (2017). Novel lnc RNA regulated by HIF-1 inhibits apoptotic cell death in the renal tubular epithelial cells under hypoxia. Physiol. Rep. 5, e13203.   DOI
42 Lubelsky, Y. and Ulitsky, I. (2018). Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature 555, 107-111.   DOI
43 Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275.   DOI
44 Mercer, T.R., Dinger, M.E., and Mattick, J.S. (2009). Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155-159.   DOI
45 Nabilsi, N.H., Broaddus, R.R., and Loose, D.S. (2009). DNA methylation inhibits p53-mediated survivin repression. Oncogene 28, 2046-2050.   DOI
46 Penny, G.D., Kay, G.F., Sheardown, S.A., Rastan, S., and Brockdorff, N. (1996). Requirement for Xist in X chromosome inactivation. Nature 379, 131-137.   DOI
47 Pollex, T. and Heard, E. (2012). Recent advances in X-chromosome inactivation research. Curr. Opin. Cell Biol. 24, 825-832.   DOI
48 Scheuermann, J.C. and Boyer, L.A. (2013). Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J. 32, 1805-1816.   DOI
49 Kulshreshtha, R., Ferracin, M., Wojcik, S.E., Garzon, R., Alder, H., Agosto-Perez, F.J., Davuluri, R., Liu, C.G., Croce, C.M., Negrini, M., et al. (2007). A microRNA signature of hypoxia. Mol. Cell. Biol. 27, 1859-1867.   DOI
50 Schonrock, N., Harvey, R.P., and Mattick, J.S. (2012). Long noncoding RNAs in cardiac development and pathophysiology. Circ. Res. 111, 1349-1362.   DOI
51 Lauer, V., Grampp, S., Platt, J., Lafleur, V., Lombardi, O., Choudhry, H., Kranz, F., Hartmann, A., Wullich, B., Yamamoto, A., et al. (2020). Hypoxia drives glucose transporter 3 expression through hypoxia-inducible transcription factor (HIF)-mediated induction of the long noncoding RNA NICI. J. Biol. Chem. 295, 4065-4078.   DOI
52 Lee, D.D., Leao, R., Komosa, M., Gallo, M., Zhang, C.H., Lipman, T., Remke, M., Heidari, A., Nunes, N.M., Apolonio, J.D., et al. (2019). DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. J. Clin. Invest. 129, 223-229.   DOI
53 Lelli, A., Nolan, K.A., Santambrogio, S., Gonçalves, A.F., Schonenberger, M.J., Guinot, A., Frew, I.J., Marti, H.H., Hoogewijs, D., and Wenger, R.H. (2015). Induction of long noncoding RNA MALAT1 in hypoxic mice. Hypoxia (Auckl.) 3, 45-52.   DOI
54 Li, T., Xiao, Y., and Huang, T. (2018). HIF-1α-induced upregulation of lncRNA UCA1 promotes cell growth in osteosarcoma by inactivating the PTEN/AKT signaling pathway. Oncol. Rep. 39, 1072-1080.
55 Tee, A.E., Liu, B., Song, R., Li, J., Pasquier, E., Cheung, B.B., Jiang, C., Marshall, G.M., Haber, M., Norris, M.D., et al. (2016). The long noncoding RNA MALAT1 promotes tumor-driven angiogenesis by up-regulating proangiogenic gene expression. Oncotarget 7, 8663-8675.   DOI
56 Lin, J., Zhang, X., Xue, C., Zhang, H., Shashaty, M.G., Gosai, S.J., Meyer, N., Grazioli, A., Hinkle, C., and Caughey, J. (2015). The long noncoding RNA landscape in hypoxic and inflammatory renal epithelial injury. Am. J. Physiol. Renal Physiol. 309, F901-F913.   DOI
57 Schmitt, A.M. and Chang, H.Y. (2016). Long noncoding RNAs in cancer pathways. Cancer Cell. 29, 452-463.   DOI
58 Su, W., Xu, M., Chen, X., Chen, N., Gong, J., Nie, L., Li, L., Li, X., Zhang, M., and Zhou, Q. (2017). Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer. Mol. Cancer 16, 142.   DOI
59 Sun, J., Wang, X., Fu, C., Wang, X., Zou, J., Hua, H., and Bi, Z. (2016). Long noncoding RNA FGFR3-AS1 promotes osteosarcoma growth through regulating its natural antisense transcript FGFR3. Mol. Biol. Rep. 43, 427-436.   DOI
60 Tang, Y., Cheung, B.B., Atmadibrata, B., Marshall, G.M., Dinger, M.E., Liu, P.Y., and Liu, T. (2017). The regulatory role of long noncoding RNAs in cancer. Cancer Lett. 391, 12-19.   DOI
61 Xue, M., Li, X., Li, Z., and Chen, W. (2014). Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biol. 35, 6901-6912.   DOI
62 Voellenkle, C., Garcia-Manteiga, J.M., Pedrotti, S., Perfetti, A., De Toma, I., Da Silva, D., Maimone, B., Greco, S., Fasanaro, P., Creo, P., et al. (2016). Implication of long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. Sci. Rep. 6, 24141.   DOI
63 Wang, Y., Liu, X., Zhang, H., Sun, L., Zhou, Y., Jin, H., Zhang, H., Zhang, H., Liu, J., Guo, H., et al. (2014). Hypoxia-inducible lncRNA-AK058003 promotes gastric cancer metastasis by targeting γ-synuclein. Neoplasia 16, 1094-1106.   DOI
64 Wu, X.R., Kong, X.P., Pellicer, A., Kreibich, G., and Sun, T.T. (2009). Uroplakins in urothelial biology, function, and disease. Kidney Int. 75, 1153-1165.   DOI