• Title/Summary/Keyword: hyperspectral image analysis

Search Result 86, Processing Time 0.032 seconds

Automatic Cross-calibration of Multispectral Imagery with Airborne Hyperspectral Imagery Using Spectral Mixture Analysis

  • Yeji, Kim;Jaewan, Choi;Anjin, Chang;Yongil, Kim
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.211-218
    • /
    • 2015
  • The analysis of remote sensing data depends on sensor specifications that provide accurate and consistent measurements. However, it is not easy to establish confidence and consistency in data that are analyzed by different sensors using various radiometric scales. For this reason, the cross-calibration method is used to calibrate remote sensing data with reference image data. In this study, we used an airborne hyperspectral image in order to calibrate a multispectral image. We presented an automatic cross-calibration method to calibrate a multispectral image using hyperspectral data and spectral mixture analysis. The spectral characteristics of the multispectral image were adjusted by linear regression analysis. Optimal endmember sets between two images were estimated by spectral mixture analysis for the linear regression analysis, and bands of hyperspectral image were aggregated based on the spectral response function of the two images. The results were evaluated by comparing the Root Mean Square Error (RMSE), the Spectral Angle Mapper (SAM), and average percentage differences. The results of this study showed that the proposed method corrected the spectral information in the multispectral data by using hyperspectral data, and its performance was similar to the manual cross-calibration. The proposed method demonstrated the possibility of automatic cross-calibration based on spectral mixture analysis.

A Comparison of Classification Techniques in Hyperspectral Image (하이퍼스펙트럴 영상의 분류 기법 비교)

  • 가칠오;김대성;변영기;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.251-256
    • /
    • 2004
  • The image classification is one of the most important studies in the remote sensing. In general, the MLC(Maximum Likelihood Classification) classification that in consideration of distribution of training information is the most effective way but it produces a bad result when we apply it to actual hyperspectral image with the same classification technique. The purpose of this research is to reveal that which one is the most effective and suitable way of the classification algorithms iii the hyperspectral image classification. To confirm this matter, we apply the MLC classification algorithm which has distribution information and SAM(Spectral Angle Mapper), SFF(Spectral Feature Fitting) algorithm which use average information of the training class to both multispectral image and hyperspectral image. I conclude this result through quantitative and visual analysis using confusion matrix could confirm that SAM and SFF algorithm using of spectral pattern in vector domain is more effective way in the hyperspectral image classification than MLC which considered distribution.

  • PDF

Analyzing Preprocessing for Correcting Lighting Effects in Hyperspectral Images (초분광영상의 조명효과 보정 전처리기법 분석)

  • Yeong-Sun Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.785-792
    • /
    • 2023
  • Because hyperspectral imaging provides detailed spectral information across a broad range of wavelengths, it can be utilized in numerous applications, including environmental monitoring, food quality inspection, medical diagnosis, material identification, art authentication, and crime scene analysis. However, hyperspectral images often contain various types of distortions due to the environmental conditions during image acquisition, which necessitates the proper removal of these distortions through a data preprocessing process. In this study, a preprocessing method was investigated to effectively correct the distortion caused by artificial light sources used in indoor hyperspectral imaging. For this purpose, a halogen-tungsten artificial light source was installed indoors, and hyperspectral images were acquired. The acquired images were then corrected for distortion using a preprocessing that does not require complex auxiliary equipment. After the corrections were made, the results were analyzed. According to the analysis, a statistical transformation technique using mean and standard deviation with reference to a reference signal was found to be the most effective in correcting distortions caused by artificial light sources.

Design and Implementation of Hyperspectral Image Analysis Tool: HYVIEW

  • Huan, Nguyen van;Kim, Ha-Kil;Kim, Sun-Hwa;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.171-179
    • /
    • 2007
  • Hyperspectral images have shown a great potential for the applications in resource management, agriculture, mineral exploration and environmental monitoring. However, due to the large volume of data, processing of hyperspectral images faces some difficulties. This paper introduces the development of an image processing tool (HYVIEW) that is particularly designed for handling hyperspectral image data. Current version of HYVIEW is dealing with efficient algorithms for displaying hyperspectral images, selecting bands to create color composites, and atmospheric correction. Three band-selection schemes for producing color composites are available based on three most popular indexes of OIF, SI and CI. HYVIEW can effectively demonstrate the differences in the results of the three schemes. For the atmospheric correction, HYVIEW utilizes a pre-calculated LUT by which the complex process of correcting atmospheric effects can be performed fast and efficiently.

Utilization of Hyperspectral Image Analysis for Monitoring of Stone Cultural Heritages (석조문화재 모니터링을 위한 하이퍼스펙트럴 이미지분석의 활용)

  • Chun, Yu Gun;Lee, Myeong Seong;Kim, Yu Ri;Lee, Mi Hye;Choi, Myoung Ju;Choi, Ki Hyun
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.395-402
    • /
    • 2015
  • This study was considered utilization of hyperspectral image analysis for monitoring. Accordingly we applied to stone cultural properties to data correction methods, image classification techniques, NDVI computation techniques using hyperspectral image. As the results, hyperspectral image analysis was possible making detailed deterioration map, accurate calculation of deterioration rate, mapping of normalized difference vegetation index on the basis of reflectance of each materials. Therefore, hyperspectral image analysis will be used for effective monitoring techniques of stone cultural heritages.

Independent Component Analysis of Mixels in Agricultural Land Using An Airborne Hyperspectral Sensor Image

  • Kosaka, Naoko;Shimozato, Masao;Uto, Kuniaki;Kosugi, Yukio
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.334-336
    • /
    • 2003
  • Satellite and airborne hyperspectral sensor images are suitable for investigating the vegetation state in agricultural land. However, image data obtained by an optical sensor inevitably includes mixels caused by high altitude observation. Therefore, mixel analysis method, which estimates both the pure spectra and the coverage of endmembers simultaneously, is required in order to distinguish the qualitative spectral changes due to the chlorophyll quantity or crop variety, from the quantitative coverage change. In this paper, we apply our agricultural independent component analysis (ICA) model to an airborne hyperspectral sensor image, which includes noise and fluctuation of coverage, and estimate pure spectra and the mixture ratio of crop and soil in agricultural land simultaneously.

  • PDF

The Impact of the PCA Dimensionality Reduction for CNN based Hyperspectral Image Classification (CNN 기반 초분광 영상 분류를 위한 PCA 차원축소의 영향 분석)

  • Kwak, Taehong;Song, Ahram;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.959-971
    • /
    • 2019
  • CNN (Convolutional Neural Network) is one representative deep learning algorithm, which can extract high-level spatial and spectral features, and has been applied for hyperspectral image classification. However, one significant drawback behind the application of CNNs in hyperspectral images is the high dimensionality of the data, which increases the training time and processing complexity. To address this problem, several CNN based hyperspectral image classification studies have exploited PCA (Principal Component Analysis) for dimensionality reduction. One limitation to this is that the spectral information of the original image can be lost through PCA. Although it is clear that the use of PCA affects the accuracy and the CNN training time, the impact of PCA for CNN based hyperspectral image classification has been understudied. The purpose of this study is to analyze the quantitative effect of PCA in CNN for hyperspectral image classification. The hyperspectral images were first transformed through PCA and applied into the CNN model by varying the size of the reduced dimensionality. In addition, 2D-CNN and 3D-CNN frameworks were applied to analyze the sensitivity of the PCA with respect to the convolution kernel in the model. Experimental results were evaluated based on classification accuracy, learning time, variance ratio, and training process. The size of the reduced dimensionality was the most efficient when the explained variance ratio recorded 99.7%~99.8%. Since the 3D kernel had higher classification accuracy in the original-CNN than the PCA-CNN in comparison to the 2D-CNN, the results revealed that the dimensionality reduction was relatively less effective in 3D kernel.

Hyperspectral Image Analysis (하이퍼스펙트럴 영상 분석)

  • 김한열;김인택
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.11
    • /
    • pp.634-643
    • /
    • 2003
  • This paper presents a method for detecting skin tumors on chicken carcasses using hyperspectral images. It utilizes both fluorescence and reflectance image information in hyperspectral images. A detection system that is built on this concept can increase detection rate and reduce processing time, because the procedure for detection can be simplified. Chicken carcasses are examined first using band ratio FCM information of fluorescence image and it results in candidate regions for skin tumor. Next classifier selects the real tumor spots using PCA components information of reflectance image from the candidate regions. For the real world application, real-time processing is a key issue in implementation and the proposed method can accommodate the requirement by using a limited number of features to maintain the low computational complexity. Nevertheless, it shows favorable results and, in addition, uncovers meaningful spectral bands for detecting tumors using hyperspectral image. The method and findings can be employed in implementing customized chicken tumor detection systems.

Dimensionality Reduction Methods Analysis of Hyperspectral Imagery for Unsupervised Change Detection of Multi-sensor Images (이종 영상 간의 무감독 변화탐지를 위한 초분광 영상의 차원 축소 방법 분석)

  • PARK, Hong-Lyun;PARK, Wan-Yong;PARK, Hyun-Chun;CHOI, Seok-Keun;CHOI, Jae-Wan;IM, Hon-Ryang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2019
  • With the development of remote sensing sensor technology, it has become possible to acquire satellite images with various spectral information. In particular, since the hyperspectral image is composed of continuous and narrow spectral wavelength, it can be effectively used in various fields such as land cover classification, target detection, and environment monitoring. Change detection techniques using remote sensing data are generally performed through differences of data with same dimensions. Therefore, it has a disadvantage that it is difficult to apply to heterogeneous sensors having different dimensions. In this study, we have developed a change detection method applicable to hyperspectral image and high spat ial resolution satellite image with different dimensions, and confirmed the applicability of the change detection method between heterogeneous images. For the application of the change detection method, the dimension of hyperspectral image was reduced by using correlation analysis and principal component analysis, and the change detection algorithm used CVA. The ROC curve and the AUC were calculated using the reference data for the evaluation of change detection performance. Experimental results show that the change detection performance is higher when using the image generated by adequate dimensionality reduction than the case using the original hyperspectral image.

Scientific Examination of Kim Jeong-hee's "Buliseonrando" by Using Hyperspectral Image Analysis (초분광영상 분석을 활용한 김정희 필 불이선란도(不二禪蘭圖)의 과학적 조사)

  • Ko Soorin;Park Jinho;Lee Sujin
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.127-144
    • /
    • 2023
  • "Buliseonrando," meaning "Buddhist virtues and the orchid are one and the same," was painted by Chusa Kim Jeong-hee. Four appreciation sentences are written in various fonts around the orchid drawn in the center of the painting, along with a total of 15 seals stamped. Hyperspectral image analysis(HSI), microscopy, and X-ray fluorescence (XRF) were conducted with a focus on the seals and the parts of the painting that have been applied with a conservation treatment. As a result of the analyses, the seals were classified into two types-seals with or without barium content. Stamp shade was identified only in five of themstamps, which allows the assumption that the composition and material characteristics of the stamp inks varied depending on the period. In particular, hyperspectral image analysis confirms traces of conservation treatment on the seals and the lost parts identified in addition to the 15 seals, which also demonstrates the utility of hyperspectral image analysis.