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Abstract: Satellite and airborne hyperspectral sensor images 
are suitable for investigating the vegetation state in agricultural 
land. However, image data obtained by an optical sensor 
inevitably includes mixels caused by high altitude observation. 
Therefore, mixel analysis method, which estimates both the 
pure spectra and the coverage of endmembers simultaneously, 
is required in order to distinguish the qualitative spectral 
changes due to the chlorophyll quantity or crop variety, from 
the quantitative coverage change. 

In this paper, we apply our agricultural independent 
component analysis (ICA) model to an airborne hyperspectral 
sensor image, which includes noise and fluctuation of coverage, 
and estimate pure spectra and the mixture ratio of crop and soil 
in agricultural land simultaneously. 
Keywords: ICA, Mixel Analysis, Hyperspectral Data. 
 
 

1. Introduction 
 

Satellite and airborne hyperspectral sensor images are 
suitable for investigating the vegetation state in 
agricultural land, such as the variety and growth stage of 
crops, effect of insects and disease damage, biochemical 
components included in crops, and so on, since the 
observation can be conducted widely, periodically and 
objectively. However, image data obtained by an optical 
sensor inevitably includes mixels caused by high altitude 
observation. Therefore, mixel analysis methods, which 
estimate both the pure spectra and the coverage of 
endmembers simultaneously, is required in order to 
distinguish the qualitative spectral changes due to the 
chlorophyll quantity, crop variety, or crop damage, from 
the quantitative coverage change. 

Most conventional methods require the pure spectra 
or knowledge of objects to estimate the mixture ratio 
from an observed mixed data. Besides, several attempts 
using ICA[1], which does not need a priori knowledge 
of objects, have been reported to estimate mixture ratio 
and spectral absorption wavelength of objects. However, 
the canonical form of ICA could not been successfully 
applied to most vegetation owing to similarity of 
chlorophyll absorption property. 

In this paper, we apply our agricultural ICA 
model[2][3][4] to an airborne hyperspectral sensor image, 
which includes noise and fluctuation of coverage, and 
estimate pure spectra and the mixture ratio of crop and 
soil in agricultural land simultaneously. 

 

2. Procedure of ICA-Aided Mixel Analysis 
 

Fig.1 shows an agricultural land observatory scheme 
using an airborne hyperspectral sensor. Mixel data 
sampled at position x  is described as bellow, 

( ) ( ) ( ) ( ) ( ) ( ){ }xRxRIxI ssvv ηληλλλ ⋅+⋅⋅= 0, .          (1) 

Where ( )λvR  and )(xvη  are the pure spectra and the 
coverage of crops. ( )λsR  and )(xsη are those of soil. 

( )λ0I  is the intensity of incident light.  
The scan direction should not be parallel to the ridge 

direction in order to analyze the periodical profile of 
coverage of vegetation and soil derived from ridges. The 
direction yielding the most significant non-Gausian 
independent component (IC) is the adequate scan 
direction among several directions tilting against the 
boundary of a field. Since the ridge direction is parallel 
to the field boundary, and the optimal ridge width in 
relation to the scan direction depends on the scan 
window size.  

In our linear mixel analysis model for agricultural 
land using ICA[2][3][4], each parameter is interpreted as 
ICA parameter shown in Table 1. ICA enables us to 
estimate both the mixture ratio, reflectance, and 
independent components, coverage, simultaneously. As a 
priori knowledge in this paper, we applied the first 
derivatives of soil spectra derived from JHU spectral 
library[5].  

We used the package of Fast ICA in MATLAB[6] 
opened to public in the experiment. 
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Fig.1 An observation of agricultural land. 

 



Table 1 Parameters interpreted as ICA. 

in our method in ICA
λ wavelength position of observation
x center position of

the circular window
time

R v (λ),R s (λ) reflectance mixture ratio
η v (x),η s (x) coverage independent component  

 

3. Experiment 
 
1) Target Vegetation 
 

Fig.2 shows target vegetation called Japanese 
persimmon tree, which is a kind of fruit trees in Japan. 
Each tree is mostly same size and planted periodically as 
described in the sketch of the field in Fig.3. However, a 
few pumpkins are planted in parts of the field, it is 
ignorable due to infinitesimal size. The vegetation 
coverage of the filed is affected by the coverage inside of 
a crown. The coverage inside a crown, crownC , is 
evaluated from the average value of four skyward photos 
for a certain typical tree as shown in Fig.4. Then we 
calculate an area size of a crown, crownS , from the 
averaged radius of 8 directions for three trees as in Fig.5. 
Therefore, we derived the coverage of the field as, 

fieldcrowncrownfield SNSCC ××= .              (2) 

Where N  is the tree number in the field, and fieldS  is 
an area size of the field. Here, fieldC  is 53.4%. 
 

 
Fig.2 Japanese persimmon tree. 
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Fig.3 Sketch of the Japanese persimmon field. 

Sky    611,980 points  31.9%
Coverage  1308,020 points  68.1%

Sky    611,980 points  31.9%
Coverage  1308,020 points  68.1%

 

Fig.4 Coverage inside of a crown. 
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Fig.5 Crown radius. 

 
2) Hyperspectral Data Acquisition 
 

Table 2 shows a specification of the hyperspectral 
sensor, ImSpector V10, made by Spesim Co. In the 
preprocessing, 61 bands from 500 to 800nm range were 
used, and radiance value is transformed into reflectance 
applying empirical line method using the field spectra of 
artificial objects. The flight condition is shown in Table 3.  

Table2 Specification of hyperspectral sensor. 

Spectral Range 400-1000 nm
Band number 121 band
Spectral Resolution 3 nm
Sampling Interval 5 nm
Frame Rate 30 frames/sec
F number 4
Dynamic Range 10 bits  
Table3 Condition of the flight. 

Date July 16, 2003
Time (J.S.T.) 12:00 p.m.
Weather fine
Flight Hight 3000 feets
Flight Speed 73 m/sec  
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Fig.6 Hyperspectral image in true color. 
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Fig.7 Spectral and periodical profiles of mixel data. 

 
A hyperspectral image of 344m in width is obtained 

with the resolution of 2.43m along the flight direction 
and 0.71m for across. Shapes of fields are not rectangle, 
because the flight direction is not parallel to the 
boundary of fields as shown in Fig.3 and Fig.6. In our 
experiment, row direction of detectors for push bloom 
sensor is set in the sampling direction, which is across to 
the flight direction. Fig.7 shows the mixel data input for 
ICA, which has 408 samples.  
 
 

4.Results and Discussion 
 

Estimated IC and noise are shown in Fig.8. Here, IC 
is the coverage of Japanese persimmon. Averaged IC is 
62.3% and an error is +8.9% in coverage. Estimated 
spectra are shown in Fig.9. In Fig.9, image spectra are 
obtained from pixels, which are most pure area in a 
hyperspectral image. Mean and the maximum errors in a 
band are 3.4% and 8.8% for Japanese persimmon, and 
3.0% and 9.1% for soil. Error in wavelength of visible 
range is a few percents. And error in wavelength of NIR 
is less than 10%. These errors resulted from differences 
of where each spectrum is obtained. The estimated 
spectra are averaged one for whole the field, while 
compared image spectra are derived from small area. 

When compared with the field spectra, error was 
larger than those with image spectra as shown in Fig.10. 
As mentioned for image spectra, observed area size 
affected the results. For an accurate estimation, it is also 
necessary to make more precise transformation of 
reflectance. 
 
 

5. Conclusions 
 

In this paper, we applied our agricultural ICA model 
to the airborne hyperspectral sensor image. Our 
technique enabled to estimate both the pure spectra and 
the coverage for the Japanese persimmon tree field from 
a real remote sensing data, which includes noise and 
fluctuation of coverage.  

As a future work, we will investigate the allowable 
sampling direction of mixed data, because the ridge 
direction is unknown in most mixel data. Moreover, in 
applying to narrower ridge width, we will have to 
remove blur effect by de-convolution.  
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Fig.8 Density and periodical profile of estimated coverage. 
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Fig.9 Estimated spectra and image spectra. 
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Fig.10 Estimated spectra and field spectra. 
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