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Abstract
The analysis of remote sensing data depends on sensor specifications that provide accurate and consistent 

measurements. However, it is not easy to establish confidence and consistency in data that are analyzed by 
different sensors using various radiometric scales. For this reason, the cross-calibration method is used to 
calibrate remote sensing data with reference image data. In this study, we used an airborne hyperspectral image 
in order to calibrate a multispectral image. We presented an automatic cross-calibration method to calibrate a 
multispectral image using hyperspectral data and spectral mixture analysis. The spectral characteristics of the 
multispectral image were adjusted by linear regression analysis. Optimal endmember sets between two images 
were estimated by spectral mixture analysis for the linear regression analysis, and bands of hyperspectral image 
were aggregated based on the spectral response function of the two images. The results were evaluated by 
comparing the Root Mean Square Error (RMSE), the Spectral Angle Mapper (SAM), and average percentage 
differences. The results of this study showed that the proposed method corrected the spectral information in the 
multispectral data by using hyperspectral data, and its performance was similar to the manual cross-calibration. 
The proposed method demonstrated the possibility of automatic cross-calibration based on spectral mixture 
analysis.
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1. Introduction

As the number of Earth observation satellites has 
increased, an increasing amount of remote sensing data 
has been extended to applications of remote sensing in 
different fields of study. Remote sensing data acquired from 
multiple sensors at various acquisition times have been 
used for continuous data collection within a given time to 
increase the accuracy of analysis. Because result of remote 
sensing analysis depends on accurate data and consistent 
measurement over a given period, remote sensing data 

gathered from various imaging sensors and under different 
atmospheric conditions must be on a consistent radiometric 
scale. Radiometric calibration for the consistent radiometric 
scale can be conducted through the ground prior to launch, 
onboard the spacecraft post-launch, and cross-calibration 
based on reference images of the Earth. Among these 
methods, cross-calibration is the feasible solution to place 
both similar and different sensors on a common radiometric 
scale without the need of field data or sensor information. 
Hence, cross-calibration could play an important role in 
interoperability and data fusion (Chander et al., 2013).
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Several previous studies performed cross–calibration 
techniques on multispectral images, such as Landsat TM 
and ETM. Song (2004) proposed a simple approach to cross-
sensor calibration for NDVI indices. In their study, IKONOS 
and Landsat ETM+ were divided into vegetation and non-
vegetation areas by the segmentation and classification of 
an IKONOS image. The NDVI values in each area were 
calibrated by histogram matching. Röder et al. (2005) 
developed the radiometric inter-calibration of Landsat TM 
and MSS, which was used to perform the normalization 
of radiometrically uncorrected images using the available 
knowledge of parameters for the radiometrically corrected 
image. Teillet et al. (2007) investigated Spectral Band 
Difference Effects (SBDE), which are significant in cross-
calibration between multiple satellite sensors. They also 
demonstrated cross-calibration requires that the spectral 
dependencies of the sensor responses and scene illumination, 
atmosphere, and surface were taken into account. On the other 
hand, Brook and Dor (2011) used vicarious calibration targets 
to correct sensor radiance within a short period. Chander et 
al. (2013) introduced the Spectral Band Adjustment Factor 
(SBAF), which determines the spectral profile of the target 
and relative spectral responses between Landsat ETM+ 
and MODIS images. This study used additional Hyperion 
data to derive the spectral signature of the target for SBAF 
computation.

As Chander et al. (2013) presented on their study, 
hyperspectral images with narrow spectral band range 
is a good reference data for radiometric calibration of 
remote sensing data collected by multi-sensors, when 
the hyperspectral images are radiometrically corrected. 
For the effective analysis of precise spectral information 
in hyperspectral images, spectral unmixing or spectral 
mixture analysis, has been developed for its use in 
various applications to hyperspectral images (Heinz and 
Chang, 2001; Franke et al., 2009; Raksuntorn and Du, 
2010). Spectral unmixing is the procedure by which the 
measured spectrum of a mixed pixel is decomposed into 
a collection of constituent spectra, or endmembers, and 
a set of corresponding fractions, or abundances, that 
indicate the proportions of each endmember present in the 
pixel (Keshava, 2003). Many previous studies on spectral 

unmixing applied nonnegative matrix factorization (NMF) 
for remote sensing analysis. Since Paatero and Tapper 
(1994) and Lee and Seung (1999) introduced the NMF, it 
has become well known as effective in finding reduced rank 
nonnegative factors to approximate a given nonnegative 
data matrix (Berry et al., 2007). Based on NMF, Yokoya 
et al. (2013) introduced Coupled NMF (CNMF) to fuse 
the hyperspectral and multispectral images collected from 
the same sensor. This technique was used to optimize 
the abundance maps of multispectral images and the 
endmembers of hyperspectral images by unmixing NMF 
iteratively so that the fused images resulted intermediate 
spectral information on similarities and differences 
between the multispectral and hyperspectral images.

Using hyperspectral data and spectral mixture analysis 
technique, we present an automatic cross-calibration 
method to calibrate the multispectral image used in this 
study. The spectral characteristics of the multispectral 
image were adjusted using linear regression analysis 
based on the endmember sets from two images, which 
were automatically extracted using spectral unmixing 
techniques. The bands in the hyperspectral image were 
aggregated based on the spectral response function to 
reduce the difference in relative spectral responses between 
the spectral bands of two images.

2. Methodology

The method proposed for the cross-calibration of 
hyperspectral images is divided into three parts. The first 
section includes the conversion to Top of Atmosphere (TOA) 
and histogram matching to reference the data and determine 
the target data. These data need to be calibrated before 
performing spectral unmixing between the reference data 
and the target data. The second section is the endmember 
set estimation. The endmember set estimation between 
the hyperspectral and multispectral images is performed 
using NMF based on the spectral unmixing approach. In 
spectral unmixing, the linear model is generally recognized 
as acceptable in many real-world scenarios even though 
it is not always true, such as in collected conditions with 
strong non-linearity (Keshava, 2003). Both hyperspectral 
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images, which are reference image (REF) and multispectral 
images, which are target data (TAR), can be unmixed into 
endmember and abundance as follows:

  
   ×  

   ×  

    ×
×× 

× 

    ×
××

 ×

  arccos∥∥·∥∥
〈〉 

  × 

  









  

   
  

 (1)   ×  

   ×  

    ×
×× 

× 

    ×
××

 ×

  arccos∥∥·∥∥
〈〉 

  × 

  









  

   
  

  (2)

In Eq. (1), REF is a hyperspectral image, υ represents noise, 
and emREF and abunREF are endmember spectrum collection 
and their abundance map of REF, respectively. In Eq. (2), 
TAR is a multispectral image that needs to be calibrated, 
emTAR and abunTAR are endmember sets and their abundance 
map of TAR, respectively. To estimate gain and offset through 
linear regression analysis, emREF and emTAR require the 
spectral information about identical materials on the scene. 
Because it is diffi cult to estimate emREF and emTAR in the same 
material directly from Eqs. (1) and (2), we adopted CNMF to 
calculate the optimized emREF and emTAR between REF and 
TAR (Yokoya et al., 2012). The origianl CNMF is focused 
on the image fusion of images collected simultaneously 
from same sensor system and estimates endmember sets 
and abundance maps assuming that the images have less 
atmospheric and radiometric differences (Yokoya et al., 

2012). Because the concept of cross-calibration is to calibrate 
images radiometrically and atmospherically by using a 
radiometric- and atmospheric-corrected image, we focused 
to estimate endmember sets between images although the 
images have high atmospheric and radiometric differences.

Fig. 1 shows the entire process of the endmember set 
estimation that we proposed. Each NMF unmixing updates 
the endmember sets or abundance maps of REF and TAR, 
which was done using multiplicative update rules as follows:   ×  

   ×  

    ×
×× 

× 

    ×
××

 ×
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〈〉 
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(3)

   ×  

   ×  

    ×
×× 

× 

    ×
××

 ×

  arccos∥∥·∥∥
〈〉 

  × 
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   
  

 
(4)

In Eqs. (3) and (4), em is either emREF or emTAR, and abun 
is either abunREF or abunTAR. IMG represents REF or TAR in 
each step. abunT and emT denote the transposition of a matrix 
abun and em, respectively. emi and abuni are the em and abun 
in ith iteration step and can be updated to emi+1 and abuni+1 
using Eqs. (3) and (4) (Berry et al., 2007).

The initial endmember set of REF for the fi rst NMF 
unmixing was estimated using vertex component analysis 
(VCA), which is an endmember extraction algorithm known 
for its fast processing in estimating the endmember spectrum 
in hyperspectral images (Nascimento and Bioucas-Dias, 
2005). The initial ratio in each pixel of abunREF was 1 divided 
by the total number of endmembers. Eq. (4) was used with 
REF as IMG and abunREF as abun to estimate abunREF fi rst. 
Then emREF and the estimated abunREF were updated by 
Eqs. (3) and (4) where REF is IMG. The updated emREF was 
converted to emTAR by multiplying the spectral response 
function matrix between REF and TAR (BlackBridge, 
2012). The updated abunREF was also converted to abunTAR 
by applying the point spread function by considering the 
spatial resolution of REF and TAR (Yokoya et al., 2012; Chi, 
2013). The second NMF unmixing was performed using the 
converted emTAR and abunTAR. At this time, emTAR was updated 
by Eq. (3), where TAR was IMG and abunTAR is abun fi rst. 
Then emTAR and the estimated abunTAR were updated by Eqs. 
(3) and (4), where REF is IMG. After the fi rst and second 
NMF unmixing, the SAM value was estimated to measure Fig. 1. Process of the endmember set estimation
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the similarity of the updated emREF and emTAR. Because the 
SAM is insensitive to variations in illumination, it is effective 
to estimate the similarity of the updated emREF and emTAR from 
images collected with different radiometric and atmospheric 
conditions. It uses the vector direction rather than the vector 
length. SAM becomes closer to zero as two images become 
spectrally similar. It can be calculated by Eqs. (5), where 
Vresult1 denotes the generic pixel vector element of the previous 
result and Vresult2 denotes the generic pixel vector element of 
the updated result.  (Stathaki, 2008).

   ×  

   ×  

    ×
×× 

× 

    ×
××

 ×

  arccos∥∥·∥∥
〈〉 

  × 

  









  

   
  

 (5)

The second iteration process was performed by re-starting 
the fi rst NMF unmixing with the updated emREF, not the 
initial emREF estimated by VCA. The SAM value between 
the updated emREF and emTAR determined from the second 
iteration process. This was compared with the SAM value 
estimated in the fi rst iteration process. If the current SAM 
value was smaller than the previous SAM value or the 
iteration loop reached a maximum number of iterations, the 
iteration loop was ended. 

After the optimal endmember set between REF and 
TAR was estimated, band aggregation was performed 
based on the spectral response function of REF and TAR. 
Using emREF after the band aggregation and emTAR from the 
optimal endmember set, we performed linear regression 
analysis and calibrated the TAR by applying estimated gain 
and offset to get calibrated result, TARcalibrated, as follow:

   ×  

   ×  

    ×
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× 

    ×
××

 ×
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3. Study Site and Data

The hyperspectral images collected by the airborne CASI-
1500 sensor were used to calibrate RapidEye multispectral 
images. The CASI-1500 sensor was developed by ITRES 
Research Ltd. of Canada. This sensor is a pushbroom 
imaging spectrometer with a spectrum ranging from 380 
nm to 1050 nm. The CASI images used in this study were 
taken in the Sejong-bo area in Sejong-Ri Yeongi-Myun 

Sejong-Si, Korea on 2 May 2014. Radiometric calibration, 
geometric correction, and optional environmental calibration 
were applied to collected stripes of CASI images to obtain 
orthocorrected images. RapidEye is a German geospatial 
information provider that operates fi ve observation satellites. 
It is the fi rst commercial sensor to detect the Red Edge band 
and provides data with a spatial resolution of 5 m GSD at nadir. 
The RapidEye scene for this study was collected at Sejong-si, 
including Sejong-bo, on 1 May 2014. The product level was 
1B, which is radiometric- and sensor-corrected and provides 
imagery as seen from the spacecraft without correction for 
any geometric distortions inherent in the imaging process. 
The specifi cations of the CASI and RapidEye images and the 
site scene are presented in Table 1, Fig. 2, and Fig. 3.

Table 1. Specifi cations of CASI and RapidEye images

Sensors CASI-1500 RapidEye
Spatial 

Resolution
(GSD)

1 m 5 m

Spectral 
Resolution 

(nm)
48 Bands

(363-1052)

Blue 440-510
Green 520-590
Red 690-730
Red Edge 630-685
NIR 760-850

Acquisition
Date 2014/05/02 2014/05/01

Fig. 2. Study site 1 displayed in 858.5 nm, 643.3 nm, and 
557.2 nm as RGB channel
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Registration between the CASI and RapidEye images was 
performed with manually collected GCPs. Study sites 1 and 
2 were selected from areas that included water, vegetation, 
paddy fi elds, and urban structures.

In this study, the number of endmembers was set at 30. 
The maximum number of iterations of the entire loop was 
fi ve because high numbers of the iteration of the entire 
loop caused abnormal abundance fractions because of the 
radiometric difference between the CASI and RapidEye 
images. The maximum number of iterations in individual 
NMF unmixing was set at 300 for optimal updating and 
appropriate time expenses. The threshold value to exit the 
individual NMF unmixing iteration by using Frobenius 
norm was set at 0.0001 (Yokoya et al., 2012).

The results of the proposed cross-calibration method 
were compared with the results of empirical line calibration 
(ELC) utility in an ENVI program, which performed 
the cross-calibration with manually collected regions of 
interest (ROIs); 30 ROIs from the scene were collected 
manually from invariant features of urban structure, water, 
forest, paddy fi elds, and more to process the empirical line 
calibration. Both results were statically evaluated using the 
root mean square error (RMSE) and SAM to compare the 
pixel difference and spectral difference in the calibrated 
results with the reference data. The RMSE and SAM values 

were calculated using Eqs. (7) and (5), respectively. In Eq. 
(7), n is the total number of pixel, and reference (i) and 
result (i) are the refl ectance value of ith pixel in reference 
and result images, respectively. In Eq. (5), result 1 is 
reference and result 2 is the calibration result image. The 
average percent difference was also calculated to compare 
differences before and after cross-calibration. The average 
percent difference indicates the degree in percentage of 
the differences between the pixels in two images. It was 
calculated by Eq. (8), where reference is the matrix with 
refl ectance values of reference and result is the matrix 
with refl ectance values of calibration result (Chander et al., 
2013).

   ×  

   ×  

    ×
×× 

× 

    ×
××

 ×

  arccos∥∥·∥∥
〈〉 

  × 

  









  

   
  
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   ×  

   ×  

    ×
×× 

× 

    ×
××

 ×

  arccos∥∥·∥∥
〈〉 

  × 

  









  

   
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 (8)

4. Result and Discussion

Table 2 presents the results of the statistical evaluation 
of the cross-calibration of the RapidEye image using the 
CASI image. The RMSE and SAM indices of the results 
of ELC and the proposed method were calculated using 
CASI data and RapidEye-ATCOR data as references. The 
similarity of the spectral information in the cross-calibration 
results was evaluated by comparing with the CASI data. 
RapidEye-ATCOR is an atmospherically corrected version 
of RapidEye data in refl ectance by using ATCOR. It was used 
as a reference to evaluate the effectiveness of the proposed 
method as an atmospheric correction tool. The RMSE and 
SAM indices in Table 3 show the spectral differences in the 
cross-calibration results compared to CASI and RapidEye-
ATCOR. The results of the ELC showed higher RMSE and 
SAM values than the results of the proposed method did, 
comparing to the CASI image and RapieEye-ATCOR. The 
RMSE and SAM indices demonstrate that the results of the 
proposed method showed fewer spectral variations and fewer 
differences of refl ectance values in the CASI image. The 
RMSE of the proposed method was increased in study site 2 

Fig. 3. Study site 2 displayed in 858.5 nm, 643.3 nm, and 
557.2 nm as RGB channel
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while that of ELC was decreased, comparing to the results of 
study site 1. It could be caused by lower variety of extracted 
endmembers for proposed method because study site 2 had 
urban structures with high spectral diversity and abnormal 
reflectance values comparing to study site 1.

Table 3 presents the average percentage differences between 
the results and the CASI image before and after cross-calibration, 
which were used to evaluate the differences in the pixel values 
before and after calibration. Before the cross-calibration, the 
average percentage difference between the CASI and original 
RapidEye images of study site 1 was –0.883%. After the 
cross-calibration, the average percentage difference between 
the CASI image and the ELC result was reduced to –0.478%. 
The average percentage difference between the CASI image 
and the results of the proposed method was greatly reduced to 
0.045%. In study site 2, the average percentage difference was 
–0.833% before the calibration, but it increased to –0.053% 
and 0.069% after cross-calibration, using the ELC and the 
proposed method, respectively. As the SAM values on site 1, 
the higher value of the average percentage difference in the 
result of the proposed method for study site 2 could be caused 
by the spectral diversity and abnormality of urban structures 
on study site 2. The high spectral diversity and abnormal 
reflectance values could interrupt to extract endmembers of 
main components on study site 1, although the components 
that mainly cover the study site needed to be extracted as 
endmembers for the efficient cross-calibration. Since the 
difference of the lower SAM values and the higher average 
percentage difference value was not relatively high, the 

cross-calibration results of the proposed method and ELC 
had similar quality on study site 2.

Compared with CASI RapidEye-ATCOR

Methods ELC Proposed  
Method ELC Proposed  

Method

Site 1

RMSE 
(ideal = 0) 437.378  235.920  1350.090  1277.202  

SAM 
(ideal = 0) 0.484  0.393  0.587  0.295  

Site 2

RMSE 
(ideal = 0) 326.397  274.006  1416.232  1568.511  

SAM 
(ideal = 0) 0.194  0.198  0.208  0.208  

Table 2. Comparison of RMSE and SAM indices 
for cross-calibration results

Compared with CASI

Methods ELC Proposed  
Method

Site 1

Average  % difference 
before calibration (%) -0.883  

Average % difference 
after calibration (%) -0.478  0.045  

Site 2

Average  % difference 
before calibration (%) -0.833  

Average % difference 
after calibration (%) -0.053  0.069  

Table 3. Average % difference before and 
after cross-calibration

Fig. 4. Comparison of spectral graphs (a) at lake on study 
site 1, (b) at forest on study site 2, and (c) at shading net in 

ginseng fields on study site 2

(a) 

(b) 

(c) 
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Fig. 4 displays the spectral graphs of the pixels in three 
different materials in the study sites. The proposed result 
of water pixel displayed in Fig. 4 (a) has higher spectral 
similarity than the ELC result. The forest pixel in study site 2 
demonstrated that the proposed calibration method corrected 
the spectral information in the RapidEye data closer to CASI 
data than the ELC did. At the shading net in ginseng fields, 
both the spectral information in ELC and the proposed 
method were close to the CASI data.

5. Conclusion

In this study, we introduced the cross-calibration 
of a multispectral image using a hyperspectral image. 
Based on the spectral unmixing technique, the proposed 
method selected endmember sets from multispectral and 
hyperspectral images to estimate the optimized endmember 
sets automatically for identical materials on land. The 
results showed that the proposed method corrected the 
spectral variations in the multispectral image based on the 
hyperspectral image as much as the manual calibration 
of ELC did. Some results showed that the radiometric 
corrections performed by the proposed method were better 
than those performed by the ELC. The proposed method 
demonstrated the possibility of automatic cross-calibration 
between simultaneous remote sensing images. Automatic 
cross-calibration could save time without the need for 
manual input, such as in the selection of ROIs and the 
collection of ground data. The proposed method allows 
for the simple and easy radiometric calibration of remote 
sensing data if a reference image is available. Furthermore, 
this method could be developed for the radiometric 
correction of remote sensing data collection for time series 
analysis.
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