• 제목/요약/키워드: hyperspectral image analysis

검색결과 86건 처리시간 0.02초

Automatic Cross-calibration of Multispectral Imagery with Airborne Hyperspectral Imagery Using Spectral Mixture Analysis

  • Yeji, Kim;Jaewan, Choi;Anjin, Chang;Yongil, Kim
    • 한국측량학회지
    • /
    • 제33권3호
    • /
    • pp.211-218
    • /
    • 2015
  • The analysis of remote sensing data depends on sensor specifications that provide accurate and consistent measurements. However, it is not easy to establish confidence and consistency in data that are analyzed by different sensors using various radiometric scales. For this reason, the cross-calibration method is used to calibrate remote sensing data with reference image data. In this study, we used an airborne hyperspectral image in order to calibrate a multispectral image. We presented an automatic cross-calibration method to calibrate a multispectral image using hyperspectral data and spectral mixture analysis. The spectral characteristics of the multispectral image were adjusted by linear regression analysis. Optimal endmember sets between two images were estimated by spectral mixture analysis for the linear regression analysis, and bands of hyperspectral image were aggregated based on the spectral response function of the two images. The results were evaluated by comparing the Root Mean Square Error (RMSE), the Spectral Angle Mapper (SAM), and average percentage differences. The results of this study showed that the proposed method corrected the spectral information in the multispectral data by using hyperspectral data, and its performance was similar to the manual cross-calibration. The proposed method demonstrated the possibility of automatic cross-calibration based on spectral mixture analysis.

하이퍼스펙트럴 영상의 분류 기법 비교 (A Comparison of Classification Techniques in Hyperspectral Image)

  • 가칠오;김대성;변영기;김용일
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 추계학술발표회 논문집
    • /
    • pp.251-256
    • /
    • 2004
  • The image classification is one of the most important studies in the remote sensing. In general, the MLC(Maximum Likelihood Classification) classification that in consideration of distribution of training information is the most effective way but it produces a bad result when we apply it to actual hyperspectral image with the same classification technique. The purpose of this research is to reveal that which one is the most effective and suitable way of the classification algorithms iii the hyperspectral image classification. To confirm this matter, we apply the MLC classification algorithm which has distribution information and SAM(Spectral Angle Mapper), SFF(Spectral Feature Fitting) algorithm which use average information of the training class to both multispectral image and hyperspectral image. I conclude this result through quantitative and visual analysis using confusion matrix could confirm that SAM and SFF algorithm using of spectral pattern in vector domain is more effective way in the hyperspectral image classification than MLC which considered distribution.

  • PDF

초분광영상의 조명효과 보정 전처리기법 분석 (Analyzing Preprocessing for Correcting Lighting Effects in Hyperspectral Images)

  • 송영선
    • 한국산업융합학회 논문집
    • /
    • 제26권5호
    • /
    • pp.785-792
    • /
    • 2023
  • Because hyperspectral imaging provides detailed spectral information across a broad range of wavelengths, it can be utilized in numerous applications, including environmental monitoring, food quality inspection, medical diagnosis, material identification, art authentication, and crime scene analysis. However, hyperspectral images often contain various types of distortions due to the environmental conditions during image acquisition, which necessitates the proper removal of these distortions through a data preprocessing process. In this study, a preprocessing method was investigated to effectively correct the distortion caused by artificial light sources used in indoor hyperspectral imaging. For this purpose, a halogen-tungsten artificial light source was installed indoors, and hyperspectral images were acquired. The acquired images were then corrected for distortion using a preprocessing that does not require complex auxiliary equipment. After the corrections were made, the results were analyzed. According to the analysis, a statistical transformation technique using mean and standard deviation with reference to a reference signal was found to be the most effective in correcting distortions caused by artificial light sources.

Design and Implementation of Hyperspectral Image Analysis Tool: HYVIEW

  • Huan, Nguyen van;Kim, Ha-Kil;Kim, Sun-Hwa;Lee, Kyu-Sung
    • 대한원격탐사학회지
    • /
    • 제23권3호
    • /
    • pp.171-179
    • /
    • 2007
  • Hyperspectral images have shown a great potential for the applications in resource management, agriculture, mineral exploration and environmental monitoring. However, due to the large volume of data, processing of hyperspectral images faces some difficulties. This paper introduces the development of an image processing tool (HYVIEW) that is particularly designed for handling hyperspectral image data. Current version of HYVIEW is dealing with efficient algorithms for displaying hyperspectral images, selecting bands to create color composites, and atmospheric correction. Three band-selection schemes for producing color composites are available based on three most popular indexes of OIF, SI and CI. HYVIEW can effectively demonstrate the differences in the results of the three schemes. For the atmospheric correction, HYVIEW utilizes a pre-calculated LUT by which the complex process of correcting atmospheric effects can be performed fast and efficiently.

석조문화재 모니터링을 위한 하이퍼스펙트럴 이미지분석의 활용 (Utilization of Hyperspectral Image Analysis for Monitoring of Stone Cultural Heritages)

  • 전유근;이명성;김유리;이미혜;최명주;최기현
    • 보존과학회지
    • /
    • 제31권4호
    • /
    • pp.395-402
    • /
    • 2015
  • 이 연구에서는 하이퍼스펙트럴 이미지를 활용하여 석조문화재의 훼손상태 모니터링에 대한 활용성을 검토하였다. 이를 위해 하이퍼스펙트럴 데이터의 보정방법, 영상분류 및 정규화 식생지수 산출방법을 석조문화재에 적용하였다. 이 결과 각 물질의 분광정보를 기반으로 한 객관적인 훼손지도 작성, 정밀도 높은 훼손율의 산출 및 식생들의 활력도 모델작성 등 다양한 분석이 가능하였다. 따라서 하이퍼스펙트럴 이미지 분석을 활용하여 석조문화재를 모니터링 한다면 효율적으로 훼손상태 변화를 파악할 수 있을 것이다.

Independent Component Analysis of Mixels in Agricultural Land Using An Airborne Hyperspectral Sensor Image

  • Kosaka, Naoko;Shimozato, Masao;Uto, Kuniaki;Kosugi, Yukio
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.334-336
    • /
    • 2003
  • Satellite and airborne hyperspectral sensor images are suitable for investigating the vegetation state in agricultural land. However, image data obtained by an optical sensor inevitably includes mixels caused by high altitude observation. Therefore, mixel analysis method, which estimates both the pure spectra and the coverage of endmembers simultaneously, is required in order to distinguish the qualitative spectral changes due to the chlorophyll quantity or crop variety, from the quantitative coverage change. In this paper, we apply our agricultural independent component analysis (ICA) model to an airborne hyperspectral sensor image, which includes noise and fluctuation of coverage, and estimate pure spectra and the mixture ratio of crop and soil in agricultural land simultaneously.

  • PDF

CNN 기반 초분광 영상 분류를 위한 PCA 차원축소의 영향 분석 (The Impact of the PCA Dimensionality Reduction for CNN based Hyperspectral Image Classification)

  • 곽태홍;송아람;김용일
    • 대한원격탐사학회지
    • /
    • 제35권6_1호
    • /
    • pp.959-971
    • /
    • 2019
  • 대표적인 딥러닝(deep learning) 기법 중 하나인 Convolutional Neural Network(CNN)은 고수준의 공간-분광 특징을 추출할 수 있어 초분광 영상 분류(Hyperspectral Image Classification)에 적용하는 연구가 활발히 진행되고 있다. 그러나 초분광 영상은 높은 분광 차원이 학습 과정의 시간과 복잡도를 증가시킨다는 문제가 있어 이를 해결하기 위해 기존 딥러닝 기반 초분광 영상 분류 연구들에서는 차원축소의 목적으로 Principal Component Analysis (PCA)를 적용한 바 있다. PCA는 데이터를 독립적인 주성분의 축으로 변환시킬 수 있어 분광 차원을 효율적으로 압축할 수 있으나, 분광 정보의 손실을 초래할 수 있다. PCA의 사용 유무가 CNN 학습의 정확도와 시간에 영향을 미치는 것은 분명하지만 이를 분석한 연구가 부족하다. 본 연구의 목적은 PCA를 통한 분광 차원축소가 CNN에 미치는 영향을 정량적으로 분석하여 효율적인 초분광 영상 분류를 위한 적절한 PCA의 적용 방법을 제안하는 데에 있다. 이를 위해 PCA를 적용하여 초분광 영상을 축소시켰으며, 축소된 차원의 크기를 바꿔가며 CNN 모델에 적용하였다. 또한, 모델 내의 컨볼루션(convolution) 연산 방식에 따른 PCA의 민감도를 분석하기 위해 2D-CNN과 3D-CNN을 적용하여 비교 분석하였다. 실험결과는 분류정확도, 학습시간, 분산 비율, 학습 과정을 통해 분석되었다. 축소된 차원의 크기가 분산 비율이 99.7~8%인 주성분 개수일 때 가장 효율적이었으며, 3차원 커널 경우 2D-CNN과는 다르게 원 영상의 분류정확도가 PCA-CNN보다 더 높았으며, 이를 통해 PCA의 차원축소 효과가 3차원 커널에서 상대적으로 적은 것을 알 수 있었다.

하이퍼스펙트럴 영상 분석 (Hyperspectral Image Analysis)

  • 김한열;김인택
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권11호
    • /
    • pp.634-643
    • /
    • 2003
  • This paper presents a method for detecting skin tumors on chicken carcasses using hyperspectral images. It utilizes both fluorescence and reflectance image information in hyperspectral images. A detection system that is built on this concept can increase detection rate and reduce processing time, because the procedure for detection can be simplified. Chicken carcasses are examined first using band ratio FCM information of fluorescence image and it results in candidate regions for skin tumor. Next classifier selects the real tumor spots using PCA components information of reflectance image from the candidate regions. For the real world application, real-time processing is a key issue in implementation and the proposed method can accommodate the requirement by using a limited number of features to maintain the low computational complexity. Nevertheless, it shows favorable results and, in addition, uncovers meaningful spectral bands for detecting tumors using hyperspectral image. The method and findings can be employed in implementing customized chicken tumor detection systems.

이종 영상 간의 무감독 변화탐지를 위한 초분광 영상의 차원 축소 방법 분석 (Dimensionality Reduction Methods Analysis of Hyperspectral Imagery for Unsupervised Change Detection of Multi-sensor Images)

  • 박홍련;박완용;박현춘;최석근;최재완;임헌량
    • 한국지리정보학회지
    • /
    • 제22권4호
    • /
    • pp.1-11
    • /
    • 2019
  • 원격탐사 센서 기술의 발전으로 다양한 분광정보를 지니는 위성영상의 취득이 가능해졌다. 특히, 초분광 영상(hyperspectral image)은 연속적이고 좁은 분광파장대의 영역으로 구성되어 있기 때문에, 토지피복분류, 표적탐지, 환경 모니터링 등 다양한 분야에 효과적으로 활용할 수 있다. 원격탐사자료를 활용한 변화탐지 기법은 일반적으로 동일한 차원을 지닌 자료들의 차분을 통해 수행되기 때문에, 차원이 다른 이종 센서에는 적용하기 어려운 단점을 지니고 있다. 이에 본 연구에서는 다른 차원을 지닌 초분광 영상과 고해상도 위성영상에 적용가능한 변화탐지 기법을 개발하고, 이종 영상 간의 변화탐지기법 적용 가능성을 확인하고자 하였다. 이를 위하여, 변화탐지 기법의 적용을 위해 상관도분석, 주성분분석 등을 활용하여 초분광 영상의 차원을 축소시켜 변화탐지에 사용하였으며, 변화탐지 알고리즘은 CVA(Change Vector Analysis)을 사용하였다. 변화탐지 성능의 평가를 위해 참조자료를 사용하여 ROC(Receiver Operating Characteristics) 곡선과, AUC(Area Under Curve)을 계산하였다. 실험결과, 원 초분광 영상을 활용한 경우보다, 적합한 차원 감소 기법을 통해 제작한 영상을 사용하였을 때의 변화탐지 성능이 더 높은 것으로 나타났다. 이는 차원 감소 기법을 적용하여 초분광 영상이 지니고 있는 잡음을 제거하는 것이 변화탐지 성능에 영향을 미치는 것으로 판단된다. 추후 연구로는 융합기법을 적용한 고해상도 다중분광 영상을 이용하여 공간 해상도의 차이에 따른 변화탐지 성능을 분석할 예정이다.

초분광영상 분석을 활용한 김정희 필 불이선란도(不二禪蘭圖)의 과학적 조사 (Scientific Examination of Kim Jeong-hee's "Buliseonrando" by Using Hyperspectral Image Analysis)

  • 고수린;박진호;이수진
    • 박물관보존과학
    • /
    • 제30권
    • /
    • pp.127-144
    • /
    • 2023
  • <김정희 필 불이선란도>(이하 <불이선란도>)는 추사 김정희가 그린 작품으로 그림 중앙에 그려진 난초 주위로 4가지의 제발이 여러 서체로 쓰여 있고, 15과의 인장이 날인되어 있다. <불이선란도>에 날인된 인장과 보존처리된 부분을 중심으로 초분광영상 분석(HSI), 현미경조사, 엑스선형광분석을 실시하였다. 분석 결과 인주는 바륨 성분 유무의 2가지로 구분되었다. 인영은 추사의 인장 5과에서만 확인되어 시기별로 성분 및 재료적 특징이 다른 것으로 추정하였다. 특히 초분광영상 분석으로 15과 외에 확인된 인장 및 결실부에 대한 보존처리 흔적을 확인할 수 있었으며 이를 통해 초분광영상 분석의 활용성을 확인할 수 있었다.