• Title/Summary/Keyword: hyperfine magnetic field

Search Result 57, Processing Time 0.025 seconds

Crystallographic and Mossbauer studies of $Ni_{0.65}Zn_{0.35}Cu_{0.1}Fe_{1.9}O_4$ ($Ni_{0.65}Zn_{0.35}Cu_{0.1}Fe_{1.9}O_4$의 결정학적 및 Mossbauer 효과 연구)

  • 김우철;이승화;홍성렬;옥항남;김철성
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.118-124
    • /
    • 1998
  • $Ni_{0.65}Zn_{0.35}Cu_{0.1}Fe{1.9}O_4$ has been studied with Mossbauer spectroscopy and X-ray diffraction. The crystal structure is found to be a cubic spinel with the lattice constant $a_0=8.390{\AA}$. Mossbauer spectra of $Ni_{0.65}Zn_{0.35}Cu_{0.1}Fe{1.9}O_4$ has been taken at various temperatures ranging from 12 K to 705 K. The isomer shift indicates that iron ions are ferric at tetrahedral [A] and octahedral sites [B], respectively. The Neel temperature is determined to be $T_N=705\;K$. As the temperature increases toward $T_N$ a systematic line broadening effect in the Mossbauer spectrum is observed and interpreted to originate from different temperature dependencies of the magnetic hyperfine fields at various iron sites. The quadrupole splitting just on $T_N$ is 0.41 mm/s whereas the quadrupole shift below $T_N$ vanishes. This implies that the orientation of the magnetic hyperfine field with respect to be principal axes of the electric field gradient is random.

  • PDF

The Oxidation of Magnetic Particles in Medicinal Ointment

  • Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.83-85
    • /
    • 2012
  • Magnetic particles in a novel, wound-healing ointment were studied using M$\ddot{o}$ssbauer spectroscopy and VSM to estimate the stability of the properties of the magnetic particles. The isomer shifts of $Fe_3O_4(A)$ were found to be 0.49-0.56 mm/s relative to iron metal, this indicates that the iron ions in $Fe_3O_4(A)$ are $Fe^{3+}$. On the other hand, the isomer shifts of $Fe_3O_4(B)$ were found to be 0.91-1.13 mm/s relative to iron metal, this shows that the ion state of $Fe_3O_4(B)$ is a mixed state of $Fe^{2+}$ and $Fe^{3+}$. It is noted that this composition, as well as that of the initial pure component in the form of a highly dispersed fraction (${\sim}10\;{\AA}$), differs from the stoichiometric one. It was found that the area ratio of the M$\ddot{o}$ssbauer subspectra of $Fe_3O_4(A)$ / $Fe_3O_4(B)$ taken at 87 and 181 K linearly increased in comparison to the initial pure magnetic particles, but the rate of increase of the area ratio at 181 K was about two times that at 87 K. From the magnetic hyperfine field, despite their small size, the particles exhibit no superparamagnetism.

[ $^{11}B$ ] Nuclear Magnetic Resonance Study of Spin Structures in Terbium Tetraboride

  • Mean, B.J.;Kang, K.H.;Kim, J.H.;Hyun, I.N.;Lee, Moo-Hee;Cho, B.K.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.2
    • /
    • pp.197-202
    • /
    • 2006
  • [ $^{11}B$ ] nuclear magnetic resonance (NMR) measurements were performed on the single crystals of $TbB_4$ to investigate local electronic structure and 4f spin dynamics. $^{11}B$ NMR spectrum, Knight shift, spin-lattice and spin-spin relaxation rates were measured down to 4K at 8T. $^{11}B$ NMR shift and linewidth are huge and strongly temperature dependent due to the 4f moments. In addition, both are proportional to magnetic susceptibility, indicating that the hyperfine field at the boron site originates from the 4f spins of Tb. Below $T_N$, the single broad resonance peak of $^{11}B$ NMR splits into several peaks reflecting the local magnetic fields due to antiferromagnetic spin arrangements. The longitudinal and the transverse relaxation rates, $1/T_1\;and\;1/T_2$, independent of temperature above $T_N$, decreases tremendously confirming huge suppression of spin fluctuation below $T_N$.

  • PDF

Phase Analysis and Magnetic Properties of $Fe_5Si_xB_{5-x}$ (x = 0, 1, 2, 3) Powders Prepared by Mechanical Alloying (기계적합금법으로 제조된 $Fe_5Si_xB_{5-x}$ (x = 0, 1, 2, 3) 분말의 상분석 및 자기적 특성)

  • Hwang, Yeon;Kim, Taek-Soo;Lee, Hyo-Sook
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.6
    • /
    • pp.293-298
    • /
    • 1997
  • $Fe_5Si_Xb_{5-x}$ (x=0, 1, 2, 3) powders were prepared by mechanical alloying, and their phases and magnetic properties were investigated by using XRD, TEM, Mossbauer spectroscopy and VSM. Starting elements are incorporated into $\alpha$-Fe in the early stage of mechanical alloying, and the stable phases are formed as the milling proceeds. After the annealing at 80$0^{\circ}C$ for 2 hours, it is found that the FeB and $Fe_2B$ phases coexist for the $Fe_5B_5$(x=0) composition. By substituting Si for B, the formation of $Fe_2B$ phase is restricted and the $Fe_5SiB_2$, $Fe_2Si_{0.4}B_{0.6}$ and paramagnetic phase begin to appear. The FeB phase has wide range of hyperfine magnetic field because it is not fully crystallized on the annealing at 800 $^{\circ}C$. On the contrary, others have good crystalline phases and show well-defined hyperfine magnetic field. Magnetic saturation is highest for the $Fe_5B_5$ composition where the amount of the $Fe_2B$ phase in large.

  • PDF

Mössbauer Study on the Variation in Magnetic Properties of CuO Induced by 57Fe Addition (57Fe 이온이 CuO에 미치는 효과에 관한 Mössbauer 분광 연구)

  • Park, Jae-Yun;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.3
    • /
    • pp.113-119
    • /
    • 2009
  • $^{57}Fe_xCu_{1-x}O$(x = 0.0, 0.02) powders were prepared by sol-gel method and their crystallographic and magnetic hyperfine properties have been studied using X-ray diffraction and $M{\ddot{o}}ssbauer$ spectroscopy (MS). The crystal structure of the samples is found to be monoclinic without any secondary phases and their lattice parameters increase with increasing annealing temperature ($T_A$), which is attributed to an increase in oxygen-vacancy content. MS measurements at room temperature indicate that $Fe^{3+}$ ions substitute $Cu^{2+}$ sites and ferromagnetic phase grow with increasing $T_A$. Magnetic hyperfine and quadrupole interactions of $^{57}Fe_{0.02}Cu_{0.98}O$ ($T_A=500^{\circ}C$) in the antiferromagnetic state at 17 K have been studied, yielding the following results: $H_{hf}=426.94\;kOe$, ${\Delta}E_Q=-3.67\;mm/s$, I.S.=0.32 mm/s, ${\theta}=65^{\circ}$, ${\phi}=0^{\circ}$, and ${\eta}=0.6$.

The Study of Magnetic Structure of Ni1-xMgxFe2O4 Ferrite System by Mössbauer Spectroscopy (Mössbauer 분광법에 의한 Ni1-xMgxFe2O4 Ferrite의 자기구조 연구)

  • Yoon, In-Seop;Baek, Seung-Do
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.3
    • /
    • pp.106-112
    • /
    • 2009
  • $Ni_{1-x}Mg_xFe_2O_4$ ferrite system was studied by using X-ray diffraction and $M{\ddot{o}}ssbauer$ spectroscopy. The samples were prepared by ceramic sintering method with Mg content x. The X-ray diffraction patterns of samples show phase of cubic spinel structure. There are no remarkable changes of lattice constants in $Ni_{1-x}Mg_xFe_2O_4$ ferrite system. The $M{\ddot{o}}ssbauer$ spectra were consisted of two sets of six lines, respectively, corresponding to $Fe^{3+}$ at tetrahedral and octahedral sites. The magnetic hyperfine field of samples was decreased as increasing Mg contents x in both sites and it was shown Yafet-Kittel magnetic structure. $NiFe_2O_4$ was shown complete inverse spinel, but $NiFe_2O_4$ was shown partial inverse spinel which absorption area ratio (oct/tet) was 1.449 in $M{\ddot{o}}ssbauer$ spectrum.

Mössbauer Study of Ti0.9957Fe0.01O2

  • Kim, Eng-Chan;Moon, S.H.;Woo, S.I.;Kim, H.D.;Kim, B.Y.;Cho, J.H.;Joh, Y.G.;Kim, D.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.106-108
    • /
    • 2005
  • The rutile polycrystal $Ti_{0.99}\;^{57}Fe_{0.01}O_2$ prepared with $^{57}Fe$ enriched iron have been studied by $M\ddot{o}ssbauer$ spectroscopy, X-ray diffraction and VSM. The $M\ddot{o}ssbauer$ spectrum of $Ti_{0.99}\;^{57}Fe_{0.01}O_2$ consists of a ferromagnetic and a paramagnetic phase over all temperature ranging from 4 to 300 K. Isomer shifts indicate $Fe^{2+}$ for the ferromagnetic phase, but $Fe^{3+}$ for the paramagneic phase of $Ti_{0.99}\;^{57}Fe_{0.01}O_2$ sample. It is noted that the magnetic hyperfine field of ferromagnetic phase had the value about 1.48 times as large as that of $\alpha$-Fe. The XRD data for $Ti_{0.99}\;^{57}Fe_{0.01}O_2$ showed a pure rutile phase with tetragonal structures without any segregation of Fe into particulates within the instrumental resolution limit The magnetic hysteresis (M-H) curve at room temperature showed an obvious ferromagnetic behavior and the magnetic moment per Fe atom under the applied field of 1 T was estimated to be about $0.71{\mu}_B$, suggesting a low spin configuration of Fe ions.

Crystal Structure and Magnetic Properties of Iron Doped La-Sr-Mn-O (철을 미량 치환한 La-Sr-Mn-O의 결정학적 및 자기적 특성 연구)

  • Ahn, Geun-Young;Shim, In-Bo;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.14-19
    • /
    • 2002
  • The iron-doped perovskite La$_{0.67}$Sr$_{0.33}$Mn$_{0.99}$$^{57}$Fe$_{0.01}$O$_3$compound has been studied by x-ray diffraction, Mossbauer spectroscopy, and vibrating sample magnetometry. The single phase of the polycrystalline La$_{0.67}$Sr$_{0.33}$Mn$_{0.99}$$^{57}$Fe$_{0.01}$O$_3$powder has been prepared by a waterbased solgel method. Crystalline La$_{0.67}$Sr$_{0.33}$Mn$_{0.99}$$^{57}$Fe$_{0.01}$O$_3$was a rombohedral structure with lattice parameters a$_{0}$=5.480 $AA$, $alpha$=60.259$^{circ}$. Mossbauer spectra of La$_{0.67}$Sr$_{0.3}$/Mn$_{0.99}$$^{57}$Fe$_{0.01}$O$_3$have been taken at various temperatures ranging from 20 to 400 K. As the temperature increases toward the Curie temperature, T$_{c}$=375 K, the Mossbauer spectra show line broadening and the difference between the 1,6 and 3,4 linewidths is caused by the anisotropic hyperfine field fluctuation. The anisotropic field fluctuation of +H (P$_{+}$=0.80) is greater than -H (P$_{-}$=0.20). We calculated that the anisotropy energy was 124.01 erg/cm$^3$for T=150 K which is associated with the large line broadening.

Magnetic Properties of $ThMn_{12}-type$$NdFe_{10.7}Ti_{1.2}Mo_{0.1}$>$Ti_{1.2}Mo_{0.1}$ ($ThMn_{12}$$NdFe_{10.7}Ti_{1.2}Mo_{0.1}$의 미세구조 및 자기적 성질 연구)

  • 안성용;이승화;김철성;김윤배;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 1997
  • We have studied crystallographic and magnetic properties of $NdFe_{10.7}Ti_ {1.2}Mo_{0.1}$ by Mossbauer spectroscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The alloys were prepared by arc-melting under an argon atmosphere. The $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ has pure a single phase, whereas $NdFe_{10.7}Ti_{1.3}$ contains some $\alpha$-Fe, conformed with X-ray diffractometry and Mossbauer measurements. The $NdFe_{10.7}Ti_ {1.2}Mo_{0.1}$ has a $ThMn_{12}-type$ tetragonal structure with $a_0=8.637{\AA}$ and $c_0=4.807{\AA}$. The Curie temperature ($T_c$) is 600 K from the result of Mossbauer measurement performed at various temperatures ranging from 13 to 800 K. Each spectrum of below $T_c$ is fitted with five subspectra of Fe sites in the structure ($8i_1, 8i_2, 8j_2, 8j_1, 8f$). The area fractions of the subspectra at room temperature are 12.3%, 14.0%, 21.0% 11.8%, 40.9%, respectively. Magnetic hyperfine fields for the Fe sites decrease in the order, $H_{hf}(8i)>H_{hf}(8j)>H_{hf}(8f)$. The abrupt changes in the magnetic hyperfine field, an magnetic moment observed at about 160 K in $NdFe_ {10.7} Ti_{1.2}Mo_{0.1}$ are attributed to spin reorientations. The average hyperfine field of the $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.34(T/T_C)^{3/2}-0.14(T/T_C)^{5/2}$ for $T/T_c<0.7$, indicative of spin wave excitation. The Debye temperatures of $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ is found to be Θ=340$\pm$5 K.

  • PDF

Epr Study of the 10-Tungsto-2-vanado(Ⅳ, Ⅴ)phosphate Anion, [PV(Ⅳ)VW$_{10}O_{40}]^{6-}$

  • Lee, Chul-Wee;So, Hyun-Soo;Lee, Kyu-Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.39-41
    • /
    • 1986
  • The polycrystalline epr spectrum of ${\alpha}-1,\;2-[PV(IV)VW_{10}O_{40}]^{6-}$ doped into host crystals and its solution spectrum are reported. The solution spectrum consists of fifteen lines, indicating that the unpaired electron is hopping fast between the two vanadium atoms. The polycrystalline spectrum, which consists of three sets of fifteen lines, was analyzed as a spectrum of an I = 7 system and the epr parameters were determined. The spectrum cannot be interpreted by assuming that each line appears at the average magnetic field of two hyperfine lines expected for two uncoupled vanadium atoms.