Browse > Article
http://dx.doi.org/10.4283/JKMS.2009.19.3.113

Mössbauer Study on the Variation in Magnetic Properties of CuO Induced by 57Fe Addition  

Park, Jae-Yun (Department of Materials Science and Engineering, University of Incheon)
Kim, Kwang-Joo (Department of Physics, Konkuk University)
Abstract
$^{57}Fe_xCu_{1-x}O$(x = 0.0, 0.02) powders were prepared by sol-gel method and their crystallographic and magnetic hyperfine properties have been studied using X-ray diffraction and $M{\ddot{o}}ssbauer$ spectroscopy (MS). The crystal structure of the samples is found to be monoclinic without any secondary phases and their lattice parameters increase with increasing annealing temperature ($T_A$), which is attributed to an increase in oxygen-vacancy content. MS measurements at room temperature indicate that $Fe^{3+}$ ions substitute $Cu^{2+}$ sites and ferromagnetic phase grow with increasing $T_A$. Magnetic hyperfine and quadrupole interactions of $^{57}Fe_{0.02}Cu_{0.98}O$ ($T_A=500^{\circ}C$) in the antiferromagnetic state at 17 K have been studied, yielding the following results: $H_{hf}=426.94\;kOe$, ${\Delta}E_Q=-3.67\;mm/s$, I.S.=0.32 mm/s, ${\theta}=65^{\circ}$, ${\phi}=0^{\circ}$, and ${\eta}=0.6$.
Keywords
CuO; Mossbauer spectroscopy; monoclinic; hyperfine field; quadrupole splitting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. J. Stewart, R. A. Borzi, G. Punte, and R. C. Mercader, Phys. Rev. B, 57, 4983 (1998)   DOI
2 U. Kobler and S. T. Chattopadhyay, Z. Phys. B, 82, 383 (1991)   DOI
3 M. H. Cohen and F. Rief, Solid State Physics, edited by F. Seitz and D. Turnbull, Academic Press Inc., N.Y. (1957) vol. 5
4 H. N. Ok and J. G. Mullen, Phys. Rev., 168, 563 (1968)   DOI
5 J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett., 84, 1332 (2004)   DOI   ScienceOn
6 Z. Wang, W. Wang, J. Tang, L. D. Tung, L. Spinu, and W. Zhou, Appl. Phys. Lett., 83, 518 (2003)   DOI   ScienceOn
7 H. Ohno, D. Chiba, F. Matsukura, T. Omlya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature (London), 408, 944 (2000)   DOI   ScienceOn
8 R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature (London), 402, 787 (1999)   DOI   ScienceOn
9 T. M. Pekarek, C. L. Fuller, J. Garner, B. C. Crooker, I. Miotkowski, and A. K. Ramdas, J. Appl. Phys., 89, 7030 (2001)   DOI   ScienceOn
10 Y. D. Kim, S. L. Cooper, M. V. Klein, and B. Y. Jonker, Phys. Rev. B, 49, 1732 (1994)   DOI   ScienceOn
11 N. A. Viglin, S. V. Naumov, and A. A. Samokhvalov, Soviet Phys. Solid State, 38, 706 (1996)
12 K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett., 79, 988 (2001)   DOI   ScienceOn
13 B. X. Yang, T. R. Thurston, J. M. Tranquada, and G. Shirane, Phys. Rev. B, 39, 4343 (1989)   DOI   ScienceOn
14 J. B. Forsyth, P. J. Brown, and B. M. Wanklyn, J. Phys. C, 21, 2917 (1998)   DOI   ScienceOn
15 C. B. Azzoni, A. Paleari, and G. B. Parravicini, J. Phys.: Condens. Matter, 4, 1352 (1992)   DOI   ScienceOn
16 F. Marabelli, G. B. Parravicini, and P. Watcher, Solid State Commun., 86, 131 (1993)   DOI   ScienceOn
17 J. H. Park, M. G. Kim, H. M. Jang, and S. Ryu, Appl. Phys. Lett., 84, 1338 (2004)   DOI   ScienceOn
18 Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature (London), 402, 790 (1999)   DOI   ScienceOn
19 H. Saito, W. Zaets, R. Akimoto, K. Ando, Y. Mishima, and M. Tanaka, J. Appl. Phys., 89, 7392 (2001)   DOI   ScienceOn
20 K. J. Kim and Y. R. Park, Appl. Phys. Lett., 81, 1420 (2001)   DOI   ScienceOn