• Title/Summary/Keyword: hyperbolic tangent function

Search Result 30, Processing Time 0.024 seconds

Damping Force Modeling of Shock Absorbers Using Hyperbolic tangent (Hyperbolic tangent를 이용한 충격 흡수기 감쇠력 모델 연구)

  • 서정원;한형석;노규석;허승진;김기훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1479-1482
    • /
    • 2003
  • The shock absorber is a part having a direct influence on the ride comfort, stability and dynamic load prediction of a vehicle. Thus, a rationally modeled shock absorber should be required in the dynamic analysis of vehicles. This thesis presents a modified model, based on Worden's hyperbolic tangent function, in order to fit experimental data on the velocity-damping force of a shock absorber. The hyperbolic tangent function correctly indicates the characteristics of a shock absorber. and has the advantage of containing physical causality. To evaluate the method, comparative evaluations of the linear model. the 5th polynomial model and Worden's model were carried out. The function presented in this paper is not only simple but also makes it possible to estimate the function coefficients easily and visually. In addition, it has the advantage of containing physical causality. Lastly, it effectively models the damping force of a shock absorber.

  • PDF

Global Sliding Mode Control based on a Hyperbolic Tangent Function for Matrix Rectifier

  • Hu, Zhanhu;Hu, Wang;Wang, Zhiping;Mao, Yunshou;Hei, Chenyang
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.991-1003
    • /
    • 2017
  • The conventional sliding mode control (CSMC) has a number of problems. It may cause dc output voltage ripple and it cannot guarantee the robustness of the whole system for a matrix rectifier (MR). Furthermore, the existence of a filter can decrease the input power factor (IPF). Therefore, a novel global sliding mode control (GSMC) based on a hyperbolic tangent function with IPF compensation for MRs is proposed in this paper. Firstly, due to the reachability and existence of the sliding mode, the condition of the matrix rectifier's robustness and chattering elimination is derived. Secondly, a global switching function is designed and the determination of the transient operation status is given. Then a SMC compensation strategy based on a DQ transformation model is applied to compensate the decreasing IPF. Finally, simulations and experiments are carried out to verify the correctness and effectiveness of the control algorithm. The obtained results show that compared with CSMC, applying the proposed GSMC based on a hyperbolic tangent function for matrix rectifiers can achieve a ripple-free output voltage with a unity IPF. In addition, the rectifier has an excellent robust performance at all times.

EVALUATION OF SINGULAR INTEGRALS BY HYPERBOLIC TANGENT BASED TRANSFORMATIONS

  • Yun, Beong-In
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.133-146
    • /
    • 2011
  • We employ a hyperbolic tangent function to construct nonlinear transformations which are useful in numerical evaluation of weakly singular integrals and Cauchy principal value integrals. Results of numerical implementation based on the standard Gauss quadrature rule show that the present transformations are available for the singular integrals and, in some cases, give much better approximations compared with those of existing non-linear transformation methods.

APPROXIMATION TO THE CUMULATIVE NORMAL DISTRIBUTION USING HYPERBOLIC TANGENT BASED FUNCTIONS

  • Yun, Beong-In
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1267-1276
    • /
    • 2009
  • This paper presents a method for approximation of the standard normal distribution by using hyperbolic tangent based functions. The presented approximate formula for the cumulative distribution depends on one numerical coefficient only, and its accuracy is admissible. Furthermore, in some particular cases, closed forms of inverse formulas are derived. Numerical results of the present method are compared with those of an existing method.

Dynamic Modeling of Automotive Shock Absorbers Using Simple Nonlinear Models (단순 비선형 모델을 이용한 자동차 충격흡수기의 동특성 모델링 기법 연구)

  • 한형석;서정원;노규석;허승진;김기훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.156-162
    • /
    • 2003
  • The shock absorber is a part having a direct influence on the ride comfort, stability and dynamic load prediction of a vehicle. Thus, a rationally modeled shock absorber should be required in the dynamic analysis of vehicles. This thesis presents a modified model, based on Worden's hyperbolic tangent function, in order to fit experimental data on the velocity-damping force of a shock absorber. The hyperbolic tangent function correctly indicates the characteristics of a shock absorber, and has the advantage of containing physical causality. To evaluate the method, comparative evaluations of the linear model, the 5th polynomial model and Worden's model were carried out. The function presented in this paper is not only simple but also makes it possible to estimate the function coefficients easily and visually. In addition, it has the advantage of containing physical causality. Lastly, it effectively models the damping force of a shock absorber.

An Improvement of Performance for Cascade Correlation Learning Algorithm using a Cosine Modulated Gaussian Activation Function (코사인 모듈화 된 가우스 활성화 함수를 사용한 캐스케이드 코릴레이션 학습 알고리즘의 성능 향상)

  • Lee, Sang-Wha;Song, Hae-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.107-115
    • /
    • 2006
  • This paper presents a new class of activation functions for Cascade Correlation learning algorithm, which herein will be called CosGauss function. This function is a cosine modulated gaussian function. In contrast to the sigmoidal, hyperbolic tangent and gaussian functions, more ridges can be obtained by the CosGauss function. Because of the ridges, it is quickly convergent and improves a pattern recognition speed. Consequently it will be able to improve a learning capability. This function was tested with a Cascade Correlation Network on the two spirals problem and results are compared with those obtained with other activation functions.

  • PDF

Design of narrow band-pass filter using two fiber bragg gratings (광섬유 격자소자를 이용한 협대역 투과 필터의 설계)

  • 임종훈;이경식
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.8
    • /
    • pp.82-88
    • /
    • 1998
  • We propose and design a new type of anrrow band-pass optical filter based on two fiber gratings with different reflection wavelength. The ripples occur in the spectra of the filter with two uniform fiber gratings. Our simulation results also show that the ripples disappear with the fiber gratings apodized to both gaussian and hyperbolic tangent function. The hyperbolic tangent function seems to be a better apodization function for improving the filter's performance in terms of narrow pass bandwidth and high transmission.

  • PDF

A New Bussgang Blind Equalization Algorithm with Reduced Computational Complexity (계산 복잡도가 줄어든 새로운 Bussgang 자력 등화 알고리듬)

  • Kim, Seong-Min;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.1012-1015
    • /
    • 2011
  • The decision-directed blind equalization algorithm is often used due to its simplicity and good convergence property when the eye pattern is open. However, in a channel where the eye pattern is closed, the decision-directed algorithm is not guaranteed to converge. Hence, a modified Bussgang-type algorithm using a hyperbolic tangent function for zero-memory nonlinear(ZNL) function has been proposed and applied to avoid this problem by Filho et al. But application of this algorithm includes the calculation of hyperbolic tangent function and its derivative or a look-up table which may need a large amount of memory due to channel variations. To reduce the computational and/or hardware complexity of Filho's algorithm, in this paper, an improved method for the decision-directed algorithm is proposed. In the proposed scheme, the ZNL function and its derivative are respectively set to be the original signum function and a narrow rectangular pulse which is an approximation of Dirac delta function. It is shown that the proposed scheme, when it is combined with decision-directed algorithm, reduces the computational complexity drastically while it retains the convergence and steady-state performance of the Filho's algorithm.

Characteristics of dispersion compensation for apodized linearly-chirped optical fiber gratings (Apoidzed 선형처프된 광섬유 grating의 분산보상특성에 대한 연구)

  • 조상연;이경식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.23-28
    • /
    • 1998
  • A linearly-chirped fiber grating for the dispersion compensation over 520km of 1.3.mu.m single mode fiber is designed. The compensation characteristics of the gratings apodized each with Gaussian and hyperbolic tangent function are studied. the ripples in reflection and delay curves are coniderably reduced for both cases, but the reflection bandwidth for the hyperbolic tangent apodization is much less shrinked than that of the Gaussian apodization.

  • PDF

Improvement of Learning Capability with Combination of the Generalized Cascade Correlation and Generalized Recurrent Cascade Correlation Algorithms (일반화된 캐스케이드 코릴레이션 알고리즘과 일반화된 순환 캐스케이드 코릴레이션 알고리즘의 결합을 통한 학습 능력 향상)

  • Lee, Sang-Wha;Song, Hae-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.97-105
    • /
    • 2009
  • This paper presents a combination of the generalized Cascade Correlation and generalized Recurrent Cascade Correlation learning algorithms. The new network will be able to grow with vertical or horizontal direction and with recurrent or without recurrent units for the quick solution of the pattern classification problem. The proposed algorithm was tested learning capability with the sigmoidal activation function and hyperbolic tangent activation function on the contact lens and balance scale standard benchmark problems. And results are compared with those obtained with Cascade Correlation and Recurrent Cascade Correlation algorithms. By the learning the new network was composed with the minimal number of the created hidden units and shows quick learning speed. Consequently it will be able to improve a learning capability.