• Title/Summary/Keyword: hygroscopic method

Search Result 42, Processing Time 0.029 seconds

An Analysis of the Hygroscopic Aerosol Behavior Using the Moving Sectional Method (변동구간분할법을 이용한 흡습성 에어로졸의 거동 해석)

  • Park, J.W.;Kim, H.D.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.25-34
    • /
    • 1998
  • Hygroscopic aerosols can rapidly grow in size by steam condensation even under subsaturated steam conditions. Much efforts have been made to handle this process, but there have been computational difficulties in handling the condensational growth of hygroscopic aerosols by contentional methods. A recently released computer code, CONTAIN 2.0, employs a new technique called Moving Sectional Method(MSM) to handle the growth of hygroscopic aerosols. As a part of the model verification efforts, we have used the code to simulate the VANAM M3U hygroscopic aerosol experiment. We assess the accuracies of the new MSM and the conventional Fixed Sectional Method(ESM) based on the simulation results. Also presented are discussions about the robustness of the MSM.

  • PDF

Numerical Analysis and Experimental Measurement of Hygroscopic Warping Effects for Cellulose Fibres (셀룰로스 복합소재에서의 수분에 의한 뒤틀림 변형효과를 위한 수치해석적 실험적 연구)

  • Kim, Byeong-Sam;Kim, Ki-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.117-123
    • /
    • 2004
  • The prediction to the hydroscopic moisture warping behaviors is analyzed for cellulose-based laminates using a numerical method base on a modified classical laminate(MCL) theory for hygroscopic moisture deformations with cycling testing data. The experimental measurement of the interferometric hygroscopic warping effects, moisture generator, and curvature of cellulose reinforced epoxy laminates is studied under cyclic environmental conditions using a Moire interferometer coupled. Accurate determination of curvatures provides a description of dimensional stability evolution; the tools for validation of computational internal stress and for the warpage prediction in model safety.

Fabrication of three-dimensional electrical patterns by swollen-off process: An evolution of the lift-off process

  • Mansouri, Mariam S.;An, Boo Hyun;Shibli, Hamda Al;Yassi, Hamad Al;Alkindi, Tawaddod Saif;Lee, Ji Sung;Kim, Young Keun;Ryu, Jong Eun;Choi, Daniel S.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1235-1239
    • /
    • 2018
  • We present a novel process to fabricate three-dimensional (3D) metallic patterns from 3D printed polymeric structures utilizing different hygroscopic swelling behavior of two different polymeric materials. 3D patterns are printed with two different polymers as cube shape. The surface of the 3D printed polymeric structures is plated with nickel by an electroless plating method. The nickel patterns on the surface of the 3D printed cube shape structure are formed by removing sacrificial layers using the difference in the rate of hygroscopic swelling between two printing polymer materials. The hygroscopic behavior on the interfaced structure was modeled with COMSOL Multiphysics. The surface and electrical properties of the fabricated three-dimensional patterns were analyzed and characterized.

Study on Designing and Installation Effect of Fresh Air Load Reduction System by using Underground Double Floor Space - Proposal of Numerical Model coupled Heat and Moisture Simultaneous Transfer in Hygroscopic - (지열을 이용한 공조외기부하저감(空調外氣負荷低減) 시스템의 설계 및 도입 효과에 관한 연구 - 증기 확산지배에 의한 열수분 동시 이동 수치모델의 제안 -)

  • Son, Won-tug;Choi, Young-sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.331-340
    • /
    • 2004
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we used a model for evaluation of fresh air latent heat load reduction by hygroscopic of air to earth exchange system taking into account coupled heat and moisture transfer of underground double floor space. In conclusion it shows the validity of the proposed method for a design tool and the quantitative effect of the system.

  • PDF

A study on the water vapor permeability velocity of Polypropylene spunbond non-woven fabrics (폴리프로필렌 부직포의 투습속도에 관한 연구)

  • Choi, Jae-Woo;Jun, Byung-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.3
    • /
    • pp.229-233
    • /
    • 2006
  • The water vapor permeability of polypropylene spun bond non-woven fabrics were investigated with the water vapor permeability velocity at $20^{\circ}C$, $30^{\circ}C$ and $40^{\circ}C$ by applying the hygroscopic method. At each temperature 50, 65 and 80 %RH conditions were used. The results indicated that the water vapor permeability velocity increased with increasing the water vapor concentration difference between both sides of sample surfaces and it decreased with increasing the number of the piled-up fabrics and the apparent density.

  • PDF

Moire Interferometry Measurement and Numerical Analysis for Hygroscopic Swelling of Al-Polymer Joint (Al-Polymer 접합체의 흡습팽창에 대한 모아레 간섭 측정 및 수치해석)

  • Kim, Kibum;Kim, Yong-Yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3442-3447
    • /
    • 2014
  • A simple method to evaluate the hygroscopic characteristics of polymer of microelectronic plastic package is suggested. To evaluate the characteristics, specimens were prepared, and the internally absorbed moisture masses were measured as a function of the absorbing time and calculated numerically. The hygroscopic pressure ratio was calculated by heat transfer analysis supported by commercial FEM code because the hygroscopic diffusion equation has the same form as the heat transfer equation. The moisture masses were then summed by the self developed code. The nonconductive polymers had quite different characteristics for the different lots, even though they were the same products. The absorbed moisture mass variations were calculated for several different characteristics, and the optimal curve of the mass variation close to experimental data was selected, whose solubility and diffusivity were affected by the hygroscopic characteristics of the material. The method can be useful in the industrial fields to quickly characterize the polymer material of the semiconductor package because the fast correspondence is normally required in industry. The weight changes in the aluminum-nonconductive-polymer joint due to moisture absorption were measured. The deformed system was also measured using the Moire Interferometry system and compared with the results of finite element analysis.

POLYMERIZATION SHRINKAGE, HYGROSCOPIC EXPANSION AND MICROLEAKAGE OF RESIN-BASED TEMPORARY FILLING MATERIALS (레진계 임시수복재의 중합수축, 수화팽창과 미세누출)

  • Cho, Nak-Yeon;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.115-124
    • /
    • 2008
  • The purpose of this study was to measure the polymerization shrinkage and hygroscopic expansion of resin-based temporary filling materials and to evaluate microleakage at the interface between the materials and cavity wall. Five resin-based temporary filing materials were investigated: Fermit (Vivadent), Quicks (Dentkist), Provifil (Promedica), Spacer (Vericom), Clip (Voco). Caviton (GC) was also included for comparison. Polymerization shrinkage of five resin-based temporary filling materials was measured using the bonded disc method. For the measurement of hygroscopic expansion, the discs of six cured temporary filling materials were immersed in saline and a LVDT displacement sensor was used to measure the expansion for 7 days. For estimating of microleakage, Class I cavities were prepared on 120 extracted human molars and randomly assigned to 6 groups of 20 each. The cavities in each group were filled with six temporary filling materials. All specimens were submitted to 1000 thermocycles, with temperature varying from $5^{\circ}C/55^{\circ}C$. Microleakage was determined using a dye penetration test. The results were as follows: 1. Fermit had significantly less polymerization shrinkage than the other resin-based temporary fill ing materials. Fermit (0.22%) < Spacer (0.38%) < Quicks (0.64%), Provifil (0.67%), Clip (0.67%) 2. Resin-based temporary filling materials showed 0.43-1.1% expansion in 7 days. 3. Fermit showed the greatest leakage, while Quicks exhibited the least leakage. 4. There are no correlation between polymerization shrinkage or hygroscopic expansion and microleakage of resin-based temporary filling materials.

Studies on the Crystallization in Organic Solvents and the Stability of Sodium Cloxacillin (Sodium cloxacillin의 유기용매(有機溶媒)에 의한 결정화(結晶化) 및 안정성(安定性)에 관한 연구(硏究))

  • 백우현;김정우;봉득환
    • YAKHAK HOEJI
    • /
    • v.22 no.1
    • /
    • pp.8-14
    • /
    • 1978
  • The method that changes sodium cloxacillin from amorphous form to hydrate form was investigated. Using organic solvents of which dielectric constants are greater than 9, the amorphous sodium cloxacillin could be changed to hydrate form. The difference of water content of sodium cloxacillin hydrate caused the differences of ir spectrum at $3,350~3,360cm_{-1}$, and owing to the decrease of water content, hydrate form was changed to the morphous form, which could be identified by x-ray diffraction pattern. Regarding the stability of sodium cloxacillin in activity, the hydrate form was stable but the amorphous form was very unstable. Moreover, the stable hydrate form was scarcely hygroscopic, while the other form was hygroscopic, becoming a fused state ar $50^{\circ}$. and R.H. 50%.

  • PDF

Mechanical and Hygroscopic Behaviour of Teak Wood Sawdust Filled Recycled Polypropylene Composites

  • Yadav, Anil Kumar;Srivastava, Rajeev
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.202-208
    • /
    • 2018
  • In this paper, mechanical and hygroscopic properties of teak sawdust and recycled polypropylene (RPP) composites are evaluated and compared with virgin polypropylene (VPP) matrix based composites. Verities of composites are prepared by variation in the plastic types, wood plastic ratio and the addition of coupling agent in the formulations. Mixing of wood sawdust and polypropylene is done by a twin screw extruder, and then sheets of wood plastic composites (WPCs) are produced by using the compression molding method. The results show that recycled matrix composites exhibit better tensile, flexural strength with low impact strength than virgin matrix based composites. Recycled composites show low water absorption and thickness of swelling than virgin matrix based composites. The results confirm that wood content in the polymer matrix affects the performance of composites while presence maleated polypropylene (MAPP) improves the properties of the composites significantly. Developed RPP matrix composites are as useful as VPP matrix composites and have the potential to replace the wood and plastics products without any adverse effect of the plastics on the environment.

Hygroscopic Characteristic of Hydrothermal Reacted Panels Using Porous Materials (다공성 원료를 사용한 수열합성 패널의 흡습 특성)

  • Chu, Yong-Sik;Kwon, Choon-Woo;Song, Hoon;Lee, Jong-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.832-838
    • /
    • 2008
  • Diatomite, bentonite and zeolite were used as porous materials for fabricating hygroscopic panels. Moisture adsorption and desorption of porous materials were investigated and hydrothermal method was applied to fabricate panels. Cheolwon diatomite and Pohang zeolite showed excellent characteristics of moisture adsorption and desorption. These characteristics were caused by higher surface area and pore volume of porous materials. Correlation coefficient between surface area and moisture adsorption content of porous materials was 0.93. Moisture adsorption contents were influenced by surface area and pore volume of panels, and surface area more effected on moisture adsorption. Correlation coefficient between surface area and moisture adsorption content of panels was 0.86. Moisture adsorption content of panel with 10% Pohang zeolite was $180\;g/m^2$ and that of 10% Cheolwon diatomite was $170\;g/m^2$. Moisture desorption content of panel with 10% Pohang zeolite was $105\;g/m^2$. Moisture adsorption contents of panel with porous materials were higher than that of panel without porous materials.