DOI QR코드

DOI QR Code

POLYMERIZATION SHRINKAGE, HYGROSCOPIC EXPANSION AND MICROLEAKAGE OF RESIN-BASED TEMPORARY FILLING MATERIALS

레진계 임시수복재의 중합수축, 수화팽창과 미세누출

  • Cho, Nak-Yeon (Department of Consevative Dentistry, School of Dentistry, Seoul National University) ;
  • Lee, In-Bog (Department of Consevative Dentistry, School of Dentistry, Seoul National University)
  • 조낙연 (치과보존학교실, 서울대학교 치의학전문대학원) ;
  • 이인복 (치과보존학교실, 서울대학교 치의학전문대학원)
  • Published : 2008.03.31

Abstract

The purpose of this study was to measure the polymerization shrinkage and hygroscopic expansion of resin-based temporary filling materials and to evaluate microleakage at the interface between the materials and cavity wall. Five resin-based temporary filing materials were investigated: Fermit (Vivadent), Quicks (Dentkist), Provifil (Promedica), Spacer (Vericom), Clip (Voco). Caviton (GC) was also included for comparison. Polymerization shrinkage of five resin-based temporary filling materials was measured using the bonded disc method. For the measurement of hygroscopic expansion, the discs of six cured temporary filling materials were immersed in saline and a LVDT displacement sensor was used to measure the expansion for 7 days. For estimating of microleakage, Class I cavities were prepared on 120 extracted human molars and randomly assigned to 6 groups of 20 each. The cavities in each group were filled with six temporary filling materials. All specimens were submitted to 1000 thermocycles, with temperature varying from $5^{\circ}C/55^{\circ}C$. Microleakage was determined using a dye penetration test. The results were as follows: 1. Fermit had significantly less polymerization shrinkage than the other resin-based temporary fill ing materials. Fermit (0.22%) < Spacer (0.38%) < Quicks (0.64%), Provifil (0.67%), Clip (0.67%) 2. Resin-based temporary filling materials showed 0.43-1.1% expansion in 7 days. 3. Fermit showed the greatest leakage, while Quicks exhibited the least leakage. 4. There are no correlation between polymerization shrinkage or hygroscopic expansion and microleakage of resin-based temporary filling materials.

본 연구의 목적은 수 종의 레진계 임시수복재의 중합수축 및 수화팽창을 측정하고 레진계 임시수복재와 와동면 사이의 미세누출을 평가하고자 하였다. 본 실험의 재료는 5종의 광중합형 레진계 임시충전재 Fermit, Quicks, Provifil, Spacer, Clip와 대조군으로 석고계 충전재 Caviton을 사용하였다. 'Bonded disc method'를 이용하여 중합수축을 측정하였고, 미리 중합된 디스크 형태의 시편을 생리식염수에 담그고 LVDT로 7 일 동안 수화팽창을 기록하였다. 발거된 120개의 상, 하악 대구치에 1 급 와동을 형성한 후 각각 20개씩 6개의 군으로 나누어 각 재료를 충전한 후, 1000 회의 Thermocycling을 실시하고 2% methylene blue 염색 용액을 이용하여 미세누출을 평가하였다. 연구결과는 다음과 같다. 1. Fermit의 중합수축이 가장 적었고 (0.22%) Spacer (0.38%), Quicks (0.64%) Provifil (0.67%), Clip (0.67%) 의 순이었다. 2. 모든 재료는 24 시간 이내에 급격한 수화팽창을 나타냈고 7 일 후 수화팽창은 Caviton이 가장 컸다 (11.5%). 레진계 임시수복재는 0.43-1.1%가량 팽창하였다. 3. Fermit의 미세누출이 가장 많았으며 Quicks의 미세누출이 가장 적었다. Spacer와 Clip은 Caviton과 비슷한 정도의 미세누출을 보였다. 4. 중합수축 또는 수화팽창과 미세누출 사이의 직접적 인 상관관계는 관찰할 수 없었다.

Keywords

References

  1. Paul SJ, Scharer P. Effect of provisional cements on the bond strength of various adhesive bonding systems on dentine. J Oral Rehabil 24:8-14, 1997 https://doi.org/10.1046/j.1365-2842.1997.00484.x
  2. Garber DA, Goldstein RE. Porcelain and composite inlays & onlays. Quintessence Publishing Co, Inc. p57- 61, 1994
  3. Tulunoglu O, Uctasli MB, Ozdemir S. Coronal microleakage of temporary restorations in previously restored teeth with amalgam and composite. Oper Dent 30(3):331-337, 2005
  4. Deveaux E, Hildelbert P, Neut C, Romond C. Bacterial microleakage of Cavit, IRM, TERM, and Fermit : a 21- day in vitro study. J Endod 25(10):653-659, 1999 https://doi.org/10.1016/S0099-2399(99)80349-5
  5. Mayer T, Eickholz P. Microleakage of temporary restorations after thermocycling and mechanical loading. J Endod 23(5):320-322, 1997 https://doi.org/10.1016/S0099-2399(97)80414-1
  6. Anderson RW, Powell BJ, Pashley DH. Microleakage of three temporary endodontic restorations. J Endod 14(10):497-501, 1988 https://doi.org/10.1016/S0099-2399(88)80107-9
  7. Bobotis HG, Anderson RW, Pashley DH, Pantera EA. A microleakage study of temporary restorative materials used in endodontics. J Endod 15(12):569-572, 1989 https://doi.org/10.1016/S0099-2399(89)80151-7
  8. Uctasli MB, Tinaz AC. Microleakage of different types of termporary restorative materials used in endodontics. J Oral Sci 42(2):63-67, 2000 https://doi.org/10.2334/josnusd.42.63
  9. Hosoya N, Cox CF, Arai T, Nakamura J. The walking bleach procedure: an in vitro study to measure microleakage of five temporary sealing agents. J Endod 26(12):716-718, 2000 https://doi.org/10.1097/00004770-200012000-00011
  10. Noguera AP, McDonald NJ. A comparative in vitro coronal microleakage study of new endodontic restorative materials. J Endod 16(11):523-527, 1990 https://doi.org/10.1016/S0099-2399(07)80214-7
  11. Watts DC, Cash AJ. Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dent Mater 7:281-287, 1991 https://doi.org/10.1016/S0109-5641(05)80030-2
  12. Lee IB, Cho BH, Son HH, Um CM. The effect of consistency, specimen geometry and adhesion on the linear polymerization shrinkage measurement of light cured composites. Dent Mater 22(11):1071-1077, 2006 https://doi.org/10.1016/j.dental.2005.08.012
  13. Campos PEGA, Sampaio Filho HR, Barceleir MO. Occlusal loading evaluation in the cervical intergrity of class II cavities filled with composite. Oper Dent 30(6):727-732, 2005
  14. de Gee AJ, Feilzer AJ, Davidson CL. True linear polymerization shrinkage of unfilled resins and composite determined with a linometer. Dent Mater 9:11-14, 1995 https://doi.org/10.1016/0109-5641(93)90097-A
  15. Davidson CL, Feilzer AJ. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent 25:435-440, 1997 https://doi.org/10.1016/S0300-5712(96)00063-2
  16. Scotti R, Ciocca L, Baldissara P. Microleakage of temporary endodontic restorations in overdenture tooth abutments. Int J Prosthodont 15:479-482, 2002
  17. Jacquot BM, Panighi MM, Steinmetz P, G'sell C. Evaluation of temporary restorations'microleakage by means of electrochemical impedance measurements. J Endod 22(11):586-589, 1996 https://doi.org/10.1016/S0099-2399(96)80026-4
  18. Teplitsky PE, Meimaris IT. Sealing ability of Cavit and TERM as intermediate restorative materials. J Endod 14(6):278-282, 1988 https://doi.org/10.1016/S0099-2399(88)80026-8
  19. Lee YC, Yang SF, Hwang YF, Chueh LH, Chung KH. Microleakage of endodontic temporary restorative materials. J Endod 19:516-520, 1993 https://doi.org/10.1016/S0099-2399(06)81494-9
  20. Widerman FH, Eames WB, Serene TP. The physical and biological properties of Cavit. JADA 82:378-382, 1971
  21. Webber RT, del Rio CE, Brady JM, Segall RO. Sealing quality of a temporary filling material. Oral Surg 46:123-130, 1978 https://doi.org/10.1016/0030-4220(78)90446-2
  22. Uranga A, Blum JY, Esber S, Parahy E, Prado C. A comparative study of four coronal obturation materials in endodontic treatment. J Endod 25(3):178-180,1999 https://doi.org/10.1016/S0099-2399(99)80137-X
  23. Qvist V. The effect of mastication on marginal adaptation of composite restorations in vivo. J Dent Res 62:904-906, 1983 https://doi.org/10.1177/00220345830620081101

Cited by

  1. The Effect of Temporary Filling Materials on The Adhesion between Dentin Adhesive-coated Surface and Resin Inlay vol.33, pp.6, 2008, https://doi.org/10.5395/JKACD.2008.33.6.553
  2. Microtensile bond strength of resin inlay bonded to dentin treated with various temporary filling materials vol.36, pp.5, 2011, https://doi.org/10.5395/JKACD.2011.36.5.419
  3. Shear bond strength of a self-adhesive resin cement to resin-coated dentin vol.51, pp.1, 2013, https://doi.org/10.4047/jkap.2013.51.1.27
  4. Effect of cavity disinfectants on antibacterial activity and microtensile bond strength in class I cavity vol.36, pp.3, 2017, https://doi.org/10.4012/dmj.2016-283
  5. Coronal microleakage of four temporary restorative materials in Class II-type endodontic access preparations vol.37, pp.1, 2012, https://doi.org/10.5395/rde.2012.37.1.29