• Title/Summary/Keyword: hydroxyl radicals

Search Result 348, Processing Time 0.039 seconds

Synthesis of (2-pyridyl)-Acetyl Chitosan and Its Antioxidant Activity

  • Li, Rong-Chun
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.756-759
    • /
    • 2011
  • In this paper, chloracetyl chitosan (CACTS) was prepared at first. In the molecules of CACTS, there are active chlorine groups, which can take part in other reactions. Thus, number of chitosan derivatives will be obtained after chlorine is substituted. Choosing pyridine as the active group, a novel water-soluble chitosan derivative, (2-pyridyl)-acetyl chitosan (PACTS) was obtained and its antioxidant activity against hydroxyl radicals and superoxide radicals was assessed. The results indicated that PACTS had better antioxidant activity than that of chitosan, carboxymethyl chitosan (CMCTS), hydroxypropyl chitosan (HPCTS), and Vitamin C. And the $IC_{50}$ values against hydroxyl radicals and superoxide radicals were 0.31 mg/mL and 0.21 mg/mL, respectively.

Purification, Chemical Composition, and in vitro Antioxidant Activity of Two Protein-bound Polysaccharides from Rapeseed Meal

  • Sun, Han-Ju;Jiang, Shaotong;Zi, Mingyang;Qi, Ding
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1386-1391
    • /
    • 2009
  • Crude polysaccharides from rapeseed meal (PRM) were extracted with 0.3% NaOH aqueous solution, followed by further purifications and 2 fractions, namely PRM1 and PRM2, were separated with a DEAE-cellulose DE-52 column. Their primary compositions were analysed and antioxidant activity was determined, including scavenging activity toward superoxide anion radicals, hydroxyl radicals, and nitric oxide radicals, reducing power, and inhibitory effects against the microsomal lipid peroxidation, compared to that of L-ascorbic acid. The results indicated that PRM1 and PRM2 exhibited not only good reducing power and inhibitory effects on the microsomal lipid peroxidation, but also strong scavenging activity toward superoxide anion radicals, nitric oxide radicals, and hydroxyl radicals. In addition, positive correlations were also observed between the superoxide anion radical scavenging activity and the protein contents of the polysaccharides, and the reducing power and the sulfate contents. These findings thus clearly suggest the polysaccharides possess direct and potent antioxidant activity.

Hydrogen Peroxide Induces Apoptosis of BJAB Cells Due to Formation of Hydroxyl Radicals Via Intracellular Iron-mediated Fenton Chemistry in Glucose Oxidase-mediated Oxidative Stress

  • Lee, Jeong-Chae;Son, Young-Ok;Choi, Ki-Choon;Jang, Yong-Suk
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.21-29
    • /
    • 2006
  • The aim of this study was to determine if hydrogen peroxide ($H_2O_2$) generated by glucose oxidase (GO) induces apoptosis or necrosis of BJAB cells and which radical is the direct mediator of cell death. We found that GO produced $H_2O_2$ continuously in low concentrations, similar to in vivo conditions, and decreased proliferation and cell viability in a dose-dependent manner. The GO-mediated cytotoxicity resulted from apoptosis, and was confirmed by monitoring the cells after H33342/Annexin V/propidium iodide staining. Decreases of mitochondrial membrane potential and intracellular glutathione level were found to be critical events in the $H_2O_2$-mediated apoptosis. Additional experiments revealed that $H_2O_2$ exerted its apoptotic action through the formation of hydroxyl radicals via the Fenton rather than the Haber-Weiss reaction. Moreover, intracellular redox-active iron, but not copper, participated in the $H_2O_2$-mediated apoptosis.

Synthesis and Hydroxyl Radicals Scavenging Activity of 2-Pyridine-acetyl-N-trimethyl Chitosan Chloride

  • Li, Rongchun
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.4
    • /
    • pp.464-467
    • /
    • 2012
  • A novel chitosan derivative with double quaternary ammonium salt-2-pyridine-acetyl-N-trimethyl chitosan chloride (PATMCS) was synthesized and the antioxidant activity of PATMCS against hydroxyl radicals was assessed. The results indicated that PATMCS had potent hydroxyl scavenging activity. The $IC_{50}$ of PATMCS was 0.13 mg/mL. PATMCS showed 100% scavenging effect at a dose of 0.8 mg/mL which markedly better than that of N-trimethyl chitosan chloride (TMCS). It was confirmed that quaternary chitosan derivatives showed potent antioxidant activity. PATMCS has double quaternary ammonium salt structure in the molecules. Therefore, the antioxidant activity of PATMCS was better than TMCS. The above results are theoretically fundamental for further development and making use of chitosan resources to prepare new antioxidants.

Alaternin and Emodin with Hydroxyl Radical inhibitory and/or Scavenging Activities and Hepatoprotective Activity on Tacrine-Induced Cytotoxicity in HepG2 Cells

  • Jung, Hyun-Ah;Chung, Hae-Young;Takaka, Yokezawa;Kim, Youn-Chul;Hyun, Sook-Kyung;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.947-953
    • /
    • 2004
  • The antioxidative and hepatoprotective potentials of two anthraquinones, alaternin (2-hydroxy-emodin) and emodin, to scavenge and/or inhibit hydroxyl radicals generated by the Fenton reaction and to protect tacrine-induced cytotoxicity in human liver derived HepG2 cells were evaluated, respectively. The inhibitory activity on hydroxyl radical generated in a cell-free chemical system (FeSO$_4$/$H_2O$$_2$) was investigated by a fluorescence spectrophotometer using a highly fluorescent probe, 2$^1$,7$^1$-dichlorofluorescein. The hydroxyl radical scavenging activity was determined by electron spin resonance spectroscopy using 5,5-dimethy-1-pyrroline-N-oxide as hydroxyl radicals trapping agents. Tacrine-induced HepG2 cell toxicity was determined by a 3-[4,5-dimethylthiazole-2yl]-2,5-diphenyltertrazolium bromide assay. Although the scavenging activity of alaternin on hydroxyl radical was similar to that of emodin in dose-dependent pat-terns, the inhibitory activity exhibited by the former on hydroxyl radical generation was stron-ger than that of the latter, with $IC_{50}$/ values of 3.05$\pm$0.26 $\mu$M and 13.29$\pm$3.20 $\mu$M, respectively. In addition, the two anthraquinones, alaternin and emodin showed their hepatoprotective activ-ities on tacrine-induced cytotoxicity, and the EC$_{50}$ values were 4.02 11M and 2.37 $\mu$M, respec-tively. Silymarin, an antihepatotoxic agent used as a positive control exhibited the EC$_{50}$ value of 2.00 $\mu$M. These results demonstrated that both alaternin and emodin had the simultaneous antioxidant and hepatoprotective activities.ies.

Analytical Methods of Hydroxyl Radical Produced by TiO2 Photo-catalytic Oxidation (TiO2 광촉매 산화 반응에서 생성된 수산기 라디칼 분석 방법)

  • Kim, Seong Hee;Lee, Sang-Woo;Kim, Jeong Jin;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.245-253
    • /
    • 2015
  • The performance of $TiO_2$ photo-catalytic oxidation process is significantly dependent on the amount of hydroxyl radicals produced during the process, and it is an essential prerequisite to quantify its production. However, precise and accurate methods for quantification of hydroxyl radicals have not been developed so far. For this reason, this study was initiated to compare existing methods for analysis of hydroxyl radicals produced by $TiO_2$ photo-catalytic oxidation and to propose a new method to overcome the limitation of established methods. To simulate $TiO_2$ photo-catalytic oxidation process, Degussa P25 which has been widely used as a standard $TiO_2$ photo-catalyst was used with the dose of 0.05 g/L. The light source of process was UVC mercury low-pressure lamp (11 W, $2,975mW/cm^2$). The results indicate that both potassium iodide (KI)/UV-vis spectrometer and terephthalic acid (TPA)/fluorescence spectrometer methods could be applied to qualitatively measure hydroxyl radicals via detection of triiodide ion ($I_3{^-}$) and 2-hydroxyterephthalic acid which are produced by reactions of iodine ion ($I^-$) and TPA with hydroxyl radicals, respectively. However, it was possible to quantitatively measure hydroxyl radicals using TPA method coupled with high-performance liquid chromatograph (HPLC). The analytical results using TPA/HPLC method show that hydroxyl radical of 0.013 M was produced after 8 hours operation of photo-catalytic oxidation under specific experimental conditions of this study. The proposed method is expected to contribute to precise the evaluation of the performance of photo-catalytic oxidation process.

DNA Cleavage Induced by the Reaction of Salsolinol with Cu,Zn-Superoxide Dismutase

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2329-2332
    • /
    • 2007
  • Salsolinol, endogenous neurotoxin, is known to be involved in the pathogenesis of Parkinson's disease (PD). In the present study, we have investigated the oxidative damage of DNA induced by the reaction of salsolinol with Cu,Zn-SOD. When plasmid DNA incubated with salsolinol and Cu,Zn-SOD, DNA cleavage was proportional to the concentrations of salsolinol and Cu,Zn-SOD. The salsolinol/Cu,Zn-SOD system-mediated DNA cleavage was significantly inhibited by radical scavengers such as mannitol, ethanol and thiourea. These results indicated that free radicals might participate in DNA cleavage by the salsolinol/Cu,Zn-SOD system. Spectrophotometric study using a thiobarbituric acid showed that hydroxyl radical formation was proportional to the concentration of salsolinol and was inhibited by radical scavengers. These results indicated that hydroxyl radical generated in the reaction of salsolinol with Cu,Zn-SOD was implicated in the DNA cleavage. Catalase and copper chelators inhibited DNA cleavage and the production of hydroxyl radicals. These results suggest that DNA cleavage is mediated in the reaction of salsolinol with Cu,Zn-SOD via the generation of hydroxyl radical by a combination of the oxidation reaction of salsolinol and Fenton-like reaction of free copper ions released from oxidatively damaged SOD.

Protection by Carnosine and Homocarnosine against L-DOPA-Fe(III)-Mediated DNA Cleavage

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1251-1254
    • /
    • 2005
  • It has been proposed that oxidation of L-3,4-dihydroxyphenylalanine (DOPA) may contribute to the pathogenesis of neurodegenerative disease. In this study, L-DOPA-Fe(III)-mediated DNA cleavage and the protection by carnosine and homocarnosine against this reaction were investigated. When plasmid DNA was incubated with L-DOPA in the presence of Fe(III), DNA strand was cleaved. Radical scavengers and catalase significantly inhibited the DNA breakage. These results suggest that $H_2O_2$ may be generated from the oxidation of DOPA and then $Fe^{3+}$ likely participates in a Fenton’s type reaction to produce hydroxyl radicals, which may cause DNA cleavage. Carnosine and homocarnosine have been proposed to act as anti-oxidants in vivo. The protective effects of carnosine and homocarnosine against L-DOPA-Fe(III)-mediated DNA cleavage have been studied. Carnosine and homocarnosine significantly inhibited DNA cleavage. These compounds also inhibited the production of hydroxyl radicals in L-DOPA/$Fe^{3+}$ system. The results suggest that carnosine and homocarnosine act as hydroxyl radical scavenger to protect DNA cleavage. It is proposed that carnosine and homocarnosine might be explored as potential therapeutic agents for pathologies that involve damage of DNA by oxidation of DOPA.

Radical Scavenging Activities of Phenolic Compounds Isolated from Mulberry (Morus spp.) Cake

  • Shin, Young-Woong;Lee, Seong-Kwon;Kwon, Yun-Ju;Rhee, Soon-Jae;Choi, Sang-Won
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.4
    • /
    • pp.326-332
    • /
    • 2005
  • A methanol extract of mulberry cake prepared from mulberry fruits (Morus spp.) was shown to have strong scavenging activities against DPPH, superoxide and hydroxyl radicals. Eleven phenolic compounds were isolated from the mulberry cake by a combination of Diaion HP-20, silica gel (or polyamide), Sephadex LH-20 column chromatographies, preparative HPLC and TLC. Their chemical structures were characterized as procatechuic acid (PCA), caffeic acid (CA), cyanidin 3-O-$\beta$-D-glucopyranoside (CyG) and cyanidin $3-O-\beta­D-rutinoside$ (CyR), rutin (RT), isoquercitrin (IQT), astragalin (AG), quercetin (QT), morin (MR), di-hydroquercetin (DHQ), and 4-prenylmoracin (PM) by spectral analysis and the published data. Most of the phenolic constituents were effective scavengers of DPPH, superoxide and hydroxyl radicals, and especially caffeic acid and 4-prenylmoracin showed potent superoxide and hydroxyl radical scavenging activity, in which their activities were higher than that of the well-known antioxidant, BHT (p< 0.05). Dehydroquercetin and quercetin also exhibited strong superoxide and hydroxyl radical scavenging activities. These results suggest that mulberry cake containing antioxidant phenolic compounds may be useful as natural antioxidants in functional foods and cosmetics.