• Title/Summary/Keyword: hydrothermal reaction method

Search Result 150, Processing Time 0.026 seconds

Synthesis and Characterization of $CeO_2$ Powders by the Hydrothermal Process (수열합성법을 이용한 세륨산화물 나노분말의 특성 및 합성에 대한 연구)

  • Kong, Myung-Ho;Na, Han-Gil;Kim, Hyoun-Woo;Yang, Hack-Hui
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.49-54
    • /
    • 2010
  • We have successfully synthesized $CeO_2$ nanopowders by means of the hydrothermal method, in a low temperature range of $100-200^{\circ}C$. In order to investigate the structure and morphology of the nanopowders, scanning electron microscopy and X-ray diffraction have been employed. In addition, for exploring the optical properties, Raman spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence spectroscopy have been used. In the optimized condition, with the pH, velocity, and time of 4.5, 600 rpm, and 60 h, the $CeO_2$ nanopowders with a diameter ranging from 50 to 150 nm have been synthesized. The nanopowders exhibited the visible emission mainly in the blue region. With comparing the reaction time, it is revealed that the extinction of functional groups at 60 h contributed to the growth and homogenization of the $CeO_2$ powders. Since the overgrowth and agglomeration of nanopowders were found, we suggest that the cracking/growth process is more favorable mechanism than the dissolution/precipitation process.

Acid-Base Bifunctional Metal-Organic Frameworks: Green Synthesis and Application in One-Pot Glucose to 5-HMF Conversion

  • Zhang, Yunlei;Jin, Pei;Meng, Minjia;Gao, Lin;Liu, Meng;Yan, Yongsheng
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850132.1-1850132.14
    • /
    • 2018
  • The direct synthesis of metal-organic frameworks (MOFs) with acidic and basic active sites is challenging due to the introduction of functional groups by post-functionalization method often jeopardize the framework integrity. Herein, we report the direct synthesis of acid-base bifunctional MOFs with tuning acid-base strength. Employing modulated hydrothermal (MHT) approach, microporous MOFs named $UiO-66-NH_2$ was prepared. Through the ring-opening reaction of 1,3-propanesultone with amino group, $UiO-66-NH_2-SO_3H-type$ catalysts can be obtained. The synthesized catalysts were well characterized and their catalytic performances were evaluated in one-pot glucose to 5-HMF conversion. Results revealed the acid-base bi-functional catalyst possessed high activity and excellent stability. This work provides a general and economically viable approach for the large-scale synthesis of acid-base bi-functional MOFs for their potential use in catalysis field.

Characteristics and Preparation of CNT:ZnO Gas Sensors (CNT:ZnO 가스 센서의 제조와 특성 연구)

  • Yoon, So-Jin;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.468-471
    • /
    • 2014
  • The effects of ZnO coating on the sensing properties of CNT:ZnO based gas sensors were studied for $H_2S$ gas. The nano ZnO sensing materials were grown by hydrothermal reaction method. CNT:ZnO was prepared by ball-mill method. The mole range of nano ZnO coating on CNT surface was from 0 to 10%. The CNT:ZnO gas sensors were fabricated by a screen printing method on alumina substrates. The structural and morphological properties of the CNT:ZnO sensing materials were investigated by XRD, EDS, SEM and TEM. The XRD patterns showed that CNT:ZnO powders with hexagonal structure were grown with (002) dominant peak. The diameter of CNT from TEM was about 28 nm.

Fabrication of CuO/ZnO Nano-heterostructure by Photochemical Method and Their H2S Gas Sensing Properties

  • Kim, Jae-Hyun;Yong, Ki-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.359-359
    • /
    • 2011
  • This study reports the H2S gas sensing properties of CuO / ZnO nano-hetero structure bundle and the investigation of gas sensing mechanism. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and CuO / ZnO nano-heterostructures were prepared by photo chemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. In order to improve the H2S gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by photo-chemical deposition of CuO on the ZnO nanorods bundle. The furnace type gas sensing system was used to characterize sensing properties with diluted H2S gas (50 ppm) balanced air at various operating temperature up to 500$^{\circ}C$. The H2S gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. Photo-chemically fabricated CuO/ZnO heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with H2S gas.

  • PDF

Photocatalytic CO2 Reduction over g-C3N4 Based Materials

  • Cai, Wei-Qin;Zhang, Feng-Jun;Kong, Cui;Kai, Chun-Mei;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.581-588
    • /
    • 2020
  • Reducing CO2 into high value fuels and chemicals is considered a great challenge in the 21st century. Efficiently activating CO2 will lead to an important way to utilize it as a resource. This article reviews the latest progress of g-C3N4 based catalysts for CO2 reduction. The different synthetic methods of g-C3N4 are briefly discussed. Article mainly introduces methods of g-C3N4 shape control, element doping, and use of oxide compounds to modify g-C3N4. Modified g-C3N4 has more reactive sites, which can significantly reduce the probability of photogenerated electron hole recombination and improve the performance of photocatalytic CO2 reduction. Considering the literature, the hydrothermal method is widely used because of its simple equipment and process and easy control of reaction conditions. It is foreseeable that hydrothermal technology will continue to innovate and usher in a new period of development. Finally, the prospect of a future reduction of CO2 by g-C3N4-based catalysts is predicted.

Preparation of Silica Nanoparticles via Recycling of Silicon Sludge from Semiconductor Dicing Process and Electro-responsive Smart Fluid Application (반도체 다이싱 공정에서 발생하는 실리콘 슬러지를 재활용한 실리카 나노입자의 제조 및 전기감응형 유체로의 응용)

  • Yeon-Ryong Chu;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Chan-Gyo Kim;Minki Sa;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.15-25
    • /
    • 2023
  • In this study, silicon sludge from semiconductor dicing process is recycled to fabricate silica nanoparticles, which are applied as dispersing materials for electro-responsive (ER) smart fluid. In specific, metal impurities are removed from silicon sludge by acid washing to obtain the high-purity silicon powder. And then, silica nanoparticles are synthesized by facile hydrothermal method employing the silicon powder as reactant material. To control the size of silica nanoparticles, the reaction time of hydrothermal method is varied as 8, 15, 20, and 30 hours are applied to control the size of silica nanoparticles. Sizes of silica nanoparticles are increased proportionally to the reaction time owing to the increased numbers of hydrolysis and condensation reactions. As-synthesized silica nanoparticles are prepared as electro-responsive smart fluids by dispersing into silicon oil. Silica nanoparticles synthesized by 30 hours of hydrothermal reaction (SiO2-H30) exhibit the highest shear stress of 21.4 Pa under an applied electric field strength of 3.0kV mm-1. Such enhancement in ER performance of SiO2-H30 among various silica nanoparticles are attribute to the reinforcing effect originated from the mixed particle size, which allowing the formation of rigid chain-like structures. Accordingly, this study successfully propose a recycling method of silicon sludge to synthesize silica nanoparticles and their derived ER fluids, which may suggest new possibility to ESG management emphasizing the eco-friendliness.

Preparation of ZnO nanorods by hydrothermal method and their $NO_2$ sensing characteristics (수열합성법을 이용한 ZnO 나노로드의 제조 및 이산화질소 감응 특성)

  • Cho, Pyeong-Seok;Kim, Ki-Won;Lee, Jong-Heun
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.506-511
    • /
    • 2006
  • ZnO nanorods were prepared by the hydrothermal reaction of a solution containing $Zn(NO_3)_2{\cdot}6H_2O$, NaOH, cyclohexylamine, ethanol and water, and their $NO_2$ and CO sensing behaviors were investigated. By the control of water concentration in solution, the morphology and agglomeration of ZnO nanorods could be manipulated, which is associated with the variation of $[OH^-]$ resulted from an interaction between water and cyclohexylamine. Sea-urchin-like and well-dispersed ZnO nanorods were prepared at low and high water content, respectively. Well-dispersed ZnO nanorods showed 1.8 fold change in resistance at 1 ppm $NO_2$ while there was no significant change in resistance at 50 ppm CO. This selective detection of $NO_2$ in the presence of CO can be used in automated car ventilation systems.

Hydrothermal Synthesis of Smectite from Zeolite (제올라이트로부터 스멕타이트 수열 합성에 대한 연구)

  • Chae, Soo-Chun;Kim, You-Dong;Jang, Young-Nam;Bae, In-Kook;Ryu, Kyung-Won;Lee, Sung-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.301-310
    • /
    • 2006
  • Smectites were synthesized from Na-P type and Na-A type zeolites by the hydrothermal synthetic method, and their physicochemical properties were studied. The optimal synthetic conditions for producing smectite were $290^{\circ}C$, 72 hr and $75{\sim}100kgf/cm^2$ in autogenous pressure. pHs of initial reaction solutions for the synthesis of smectites from Na-P type and Na-A type zeolite s were pH 6 and pH 10, respectively. The synthetic smectite was confirmed as $12{\AA}$-beidellite by a series of analysis such as X-ray diffraction analysis with random and oriented mounts, ethylene glycol treatment, and Greene-Kelly test, and their several physicochemical properties were studied.

Spindle-shaped Fe2O3 Nanoparticle Coated Carbon Nanofiber Composites for Low-cost Dye-sensitized Solar Cells (저비용 염료감응 태양전지를 위한 방추형 Fe2O3 나노입자가 코팅된 탄소나노섬유 복합체)

  • Oh, Dong-Hyeun;An, HyeLan;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.95-101
    • /
    • 2016
  • Carbon nanofiber (CNF) composites coated with spindle-shaped $Fe_2O_3$ nanoparticles (NPs) are fabricated by a combination of an electrospinning method and a hydrothermal method, and their morphological, structural, and chemical properties are measured by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. For comparison, CNFs and spindle-shaped $Fe_2O_3$ NPs are prepared by either an electrospinning method or a hydrothermal method, respectively. Dye-sensitized solar cells (DSSCs) fabricated with the composites exhibit enhanced open circuit voltage (0.70 V), short-circuit current density ($12.82mA/cm^2$), fill factor (61.30%), and power conversion efficiency (5.52%) compared to those of the CNFs (0.66 V, $11.61mA/cm^2$, 51.96%, and 3.97%) and spindle-shaped $Fe_2O_3$ NPs (0.67 V, $11.45mA/cm^2$, 50.17%, and 3.86%). This performance improvement can be attributed to a synergistic effect of a superb catalytic reaction of spindle-shaped $Fe_2O_3$ NPs and efficient charge transfer relative to the one-dimensional nanostructure of the CNFs. Therefore, spindle-shaped $Fe_2O_3$-NP-coated CNF composites may be proposed as a potential alternative material for low-cost counter electrodes in DSSCs.

A study on the preparation of phosphatic calcium compounds using the shell resources (패각을 이용한 인산칼슘계 화합물의 제조에 관한 연구)

  • 이인곤;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.171-176
    • /
    • 2000
  • The phosphatic calcium compounds such as calcium hydrogen phosphate, bone ash, hydroxyapatite and tricalcium phosphate were prepared using the high purity calcium hydroxide and calcium carbonate obtained from shell resources. Calcium hydrogen phosphate had been prepared using the high purity calcium hydroxide and phosphoric acid solution. Using the calcium hydrogen phosphate as a starting materials, bone ash have been prepared by solid state reaction method and hydroxyapatite could be obtained by hydrothermal treatment method, respectively. The tricalcium phosphate was prepared by the solid state reaction of a stoichiometic mixture of bone ash and high purity calcium carbonate. In this paper, the optimal preparation process and conditions of phosphatic calcium compounds were established.

  • PDF