DOI QR코드

DOI QR Code

Photocatalytic CO2 Reduction over g-C3N4 Based Materials

  • Cai, Wei-Qin (Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University) ;
  • Zhang, Feng-Jun (Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University) ;
  • Kong, Cui (Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University) ;
  • Kai, Chun-Mei (Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2020.09.04
  • Accepted : 2020.10.06
  • Published : 2020.11.27

Abstract

Reducing CO2 into high value fuels and chemicals is considered a great challenge in the 21st century. Efficiently activating CO2 will lead to an important way to utilize it as a resource. This article reviews the latest progress of g-C3N4 based catalysts for CO2 reduction. The different synthetic methods of g-C3N4 are briefly discussed. Article mainly introduces methods of g-C3N4 shape control, element doping, and use of oxide compounds to modify g-C3N4. Modified g-C3N4 has more reactive sites, which can significantly reduce the probability of photogenerated electron hole recombination and improve the performance of photocatalytic CO2 reduction. Considering the literature, the hydrothermal method is widely used because of its simple equipment and process and easy control of reaction conditions. It is foreseeable that hydrothermal technology will continue to innovate and usher in a new period of development. Finally, the prospect of a future reduction of CO2 by g-C3N4-based catalysts is predicted.

Keywords

References

  1. S. Sorcar, J. Thompson, Y. H. wang, Y. H. Park, T. Majima, C. A. Grimes, J. R. Durrant and S. In, Energy Environ. Sci., 11, 3183 (2018). https://doi.org/10.1039/C8EE00983J
  2. Y. X. Pan, Y. You, S. Xin, Y. Li, G. Fu, Z. Cui, Y. L. Men, F. F. Cao, S. H. Yu and J. B. Goodenough, J. Am. Chem. Soc., 139, 4123 (2017). https://doi.org/10.1021/jacs.7b00266
  3. Y. Wu, Y. Wei, Q. Guo, H. Xu, L. Gu, F. Huang, D. Luo, Y. Huang, L. Fan and J. Wu, Sol. Energy Mater Sol. Cells, 176, 230 (2018). https://doi.org/10.1016/j.solmat.2017.12.005
  4. O. Melchaeva, P. Voyame, V. C. Bassetto, M. Prokein, M. Renner, E. Weidner and A. Battistel, ChemSusChem, 10, 3660 (2017). https://doi.org/10.1002/cssc.201701205
  5. R. H. Guo, C. F. Liu, T. C. Wei and C. C. Hu, Electrochem. Commun., 80, 24 (2017). https://doi.org/10.1016/j.elecom.2017.05.005
  6. X. Zhu, H. Ji, J. Yi, J. Yang, X. She, P. Ding, L. Li, J. Deng, J. Qian, H. Xu and H. Li, Ind. Eng. Chem. Res., 57, 17394 (2018). https://doi.org/10.1021/acs.iecr.8b04123
  7. B. Wang, J. Di, L. Lu, S. Yan, G. Liu, Y. Ye, H. Li, W. Zhu, H. Li and J. Xia, Appl. Catal., B, 254, 551 (2019). https://doi.org/10.1016/j.apcatb.2019.04.068
  8. R. Zhang, Z. Huang, C. Li, Y. Zuo and Y. Zhou, Appl. Surf. Sci., 475, 953 (2019). https://doi.org/10.1016/j.apsusc.2019.01.050
  9. D. O. Adekoya, M. Tahir and N. A. Amin, J. CO2 Util., 18, 261 (2017). https://doi.org/10.1016/j.jcou.2017.02.004
  10. N. T. Truc, L. G. Bach, N. T. Hanh, T. Pham, N. T. Chi, D. T. Tran and V. N. Nguyen, J. Colloid Interface Sci., 540, 1 (2019). https://doi.org/10.1016/j.jcis.2019.01.005
  11. G. Shi, L. Yang, Z. Liu, X. Chen, J. Zhou and Y. Yu, Appl. Surf. Sci., 427, 1165 (2018). https://doi.org/10.1016/j.apsusc.2017.08.148
  12. H. W. Guo, J. Ding, S. P. Wan, Y. N. Wang and Q. Zhong, Appl. Surf. Sci., 528, 146943 (2020). https://doi.org/10.1016/j.apsusc.2020.146943
  13. Z. Zhu, P. Huo, Z. Lu, Y. Yan, Z. Liu and W. Shi, Chem. Eng. J. (Amsterdam, Neth.), 331, 615 (2018). https://doi.org/10.1016/j.cej.2017.08.131
  14. Y. Wang, X. Bai, F. Wang, S. Kang, C. Yin and X. Li, J. Hazard. Mater., 372, 69 (2019). https://doi.org/10.1016/j.jhazmat.2017.10.007
  15. K. Liu, Z. Zhang, C. Shan, Z. Feng, J. Li and C. Song, Light: Sci. Appl., 5, e16136 (2016). https://doi.org/10.1038/lsa.2016.136
  16. H. Che, G. Che, P. Zhou, C. Liu, H. Dong, C. Li, N. Song and C. Li, Chem. Eng. J. (Amsterdam, Neth.), 382, 122870 (2020).
  17. Z. Zhu, Y. Yu, H. Dong, C. Li and P. Huo, ACS Sustainable Chem. Eng., 5, 10614 (2017). https://doi.org/10.1021/acssuschemeng.7b02595
  18. X. Sun, F. Zhang and C. Kong, Colloid. Surface Physicochem. Eng. Aspect., 594, 124653 (2020). https://doi.org/10.1016/j.colsurfa.2020.124653
  19. F. J. Zhang, F. Z. Xie, S. F. Zhu, J. Liu, J. Zhang, S. F. Mei and W. Zhao, Chem. Eng. J. (Amsterdam, Neth.), 228, 435 (2013). https://doi.org/10.1016/j.cej.2013.05.027
  20. Q. Wang, W. Wang, L. L. Zhong, D. M. Liu, X. Z. Cao, F. Y. Cuia, Y. Wan and D. Y. Zhao, Appl. Catal. B:Environ., 220, 290 (2018). https://doi.org/10.1016/j.apcatb.2017.08.049
  21. S. Patnaik, S. Martha and K. M. Parida, RSC Adv., 6, 46969 (2016).
  22. Q. Xiang, J. Yu and M. Jaroniec, J. Phys. Chem. C, 115, 7355 (2011). https://doi.org/10.1021/jp200953k
  23. L. H. Zhao, L. H. Zhang, H. J. Lin, Q. Y. Nong, M. Cui, Y. Wu and Y. M. He, J. Hazard. Mater., 299, 333 (2015). https://doi.org/10.1016/j.jhazmat.2015.06.036
  24. W. Ma, N. Wang, Y. Guo, L. Yang, M. Lv, X. Tang and S. Li, Chem. Eng. J. (Amsterdam, Neth.), 388, 124288 (2020).
  25. D. P. Goronzy, M. Ebrahimi, F. Rosei, Y. Arramel, S. Fang, S. L. De Feyter, S. L. Tait, C. Wang, P. H. Beton, A. T. S. Wee, P. S. Weiss and D. F. Perepichka, ACS Nano, 12, 7445 (2018). https://doi.org/10.1021/acsnano.8b03513
  26. Z. Mo, X. Zhu, Z. Jiang, Y. Song, D. Liu and H. Li, Appl. Catal. B: Environ., 256, 117854 (2019). https://doi.org/10.1016/j.apcatb.2019.117854
  27. S. C. Yan, Z. S. Li and Z. G. Zou, Langmuir, 6, 3894 (2010).
  28. W. L. Li, Y. P. Hu, E. Rodriguezcastellon and T. J. Bandosz, J. Mater. Chem., 5, 16315 (2017). https://doi.org/10.1039/C7TA02051A
  29. J. H. Li, B. Shen and Z. H. Hong, Chem. Commun., 48, 12017 (2012). https://doi.org/10.1039/c2cc35862j
  30. C. Q. Han, J. Li and Z. Y. Ma, Sci. China Mater., 9, 1159 (2018).
  31. Y. Wang, Y. Di and A. Markus, Chem. Mater., 18, 5119 (2010). https://doi.org/10.1021/cm061173b
  32. G. H. Dong, K. Zhao and L. Z. Zhang, Chem. Commun., 48, 6178 (2012). https://doi.org/10.1039/c2cc32181e
  33. G. L. Z, J. M. Yang, X. W. Zhu, Q. D. Li, W. El-alami, C. T. Wang, J. C. She, J. C. Qian, H. Xu and H. M. Li, J. Energy Chem. 49, 89 (2020). https://doi.org/10.1016/j.jechem.2020.01.020
  34. G. Liu, P. Niu, C. H. Sun, S. C. Smith, Z. G. Chen, G. Q. Lu and H. M. Cheng, J. Am. Chem. Soc., 33, 11642 (2010).
  35. K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho and J. Yu, Appl. Catal. B: Environ., 176, 44 (2015). https://doi.org/10.1016/j.apcatb.2015.03.045
  36. J. Low, S. Cao, J. Yu and S. Wageh, Chem. Commun., 50, 10768 (2014). https://doi.org/10.1039/C4CC02553A
  37. W. K. Jo, S. Kumar and S. Tonda, Compos. B. Eng., 176, 107212 (2019). https://doi.org/10.1016/j.compositesb.2019.107212
  38. X. Liu, P. Wang, H. Zhai, Q. Zhang, B. Huang and Z. Wang, Appl. Catal. B: Environ., 232, 521 (2018). https://doi.org/10.1016/j.apcatb.2018.03.094
  39. S. Samanta, R. Yadav, A. Kumar, A. K. Sinha and R. Srivastava, Appl. Catal. B: Environ., 259, 118054 (2019). https://doi.org/10.1016/j.apcatb.2019.118054
  40. S. Z. Hu, L. Ma, J. G. You, F. Y. Li, Z. P. Fan, G. Lu, D. Liu and J. Z. Gui, Appl. Surf. Sci., 311, 164 (2014). https://doi.org/10.1016/j.apsusc.2014.05.036
  41. M. Zhang, X. J. Bai, D. Liu, J. Wang and Y. F. Zhu, Appl. Catal. B: Environ., 164, 77 (2015). https://doi.org/10.1016/j.apcatb.2014.09.020
  42. Z. X. Ding, X. F. Chen, M. Antonietti and X. C. Wang, ChemSusChem, 4, 274 (2011).
  43. B. Yue, Q. Li, H. Iwai, T. Kako and J. Ye, Sci. Adv. Mater. Technol., 12, 034401 (2011). https://doi.org/10.1088/1468-6996/12/3/034401
  44. Y. Wang, Y. Xu, Y. Wang, H. Qin, X. Li, Y. Zuo, S. Kang and L. Cui, Catal. Commun., 74, 75 (2016). https://doi.org/10.1016/j.catcom.2015.10.029
  45. H. Wang, Y. Wu, T. Xiao, X. Yuan, G. Zeng, W. Tu, S. Wu, H. Y. Lee, Y. Z. Ten and J. W. Chew, Appl. Catal. B: Environ., 233, 213 (2018). https://doi.org/10.1016/j.apcatb.2018.04.012
  46. C. J. Wang, Y. L. Zhao, H. X. Xu, Y. F. Li, Y. C. Wei and J. Liu, Z. Zhao, Appl. Catal. B: Environ., 100, 106099 (2020).
  47. H. Q. Wang, J. R. Guan, J. Z. Li, X. Li, C. C. Ma, P. W. Huo and Y. S. Yan, Appl. Surf. Sci., 15, 144931 (2020).
  48. Z. Sun, W. Fang, L. Zhao and H. Wang, Appl. Surf. Sci., 504, 144347 (2020). https://doi.org/10.1016/j.apsusc.2019.144347
  49. N. X. Li, Y. Li, R. M. Jiang, J. C. Zhou and M. C. Liu, Appl. Surf. Sci., 498, 143861 (2019). https://doi.org/10.1016/j.apsusc.2019.143861
  50. G. D. Shi, L. Yang, Z. W. Liu, X. Chen, J. Q. Zhou and Y. Yu, Appl. Surf. Sci., 427, 1165 (2018). https://doi.org/10.1016/j.apsusc.2017.08.148
  51. P. Y. Li, L. Liu, W. J. An, H. Wang, H. X. Guo, Y. H. Liang and W. Q. Cui, Appl. Catal. B: Environ., 266, 118618 (2020). https://doi.org/10.1016/j.apcatb.2020.118618
  52. J. Y. Tang, W. G. Zhou, R. T. Guo, C. Y. Huang and W. G. Pa, Catal. Commun., 107, 92 (2018). https://doi.org/10.1016/j.catcom.2018.01.006
  53. C. Xin, M. Hu, K. Wang and X. Wang, Langmuir, 33, 6667 (2017). https://doi.org/10.1021/acs.langmuir.7b00620
  54. Q. Guo, L. Fu, T. Yan, W. Tian, D. Ma, J. Li and X. Wang, Appl. Surf. Sci., 509, 144773 (2020). https://doi.org/10.1016/j.apsusc.2019.144773
  55. F. Raziq, L. Sun, Y. Wang, X. Zhang, M. Humayun, S. Ali, L. Bai, Y. Qu, H. Yu and L. Jing, Adv. Energy Mater., 8, 1701580 (2017). https://doi.org/10.1002/aenm.201701580
  56. X. Zhang, K. Hu, X. Zhang, W. Ali, Z. Li, Y. Qu and L. Jing, Appl. Surf. Sci., 492, 125 (2019). https://doi.org/10.1016/j.apsusc.2019.06.189
  57. H. W. Guo, M. Q. Chen, Q. Zhong, Y. N. Wang, W. H. Ma and J. Ding, J. CO2 Util., 33, 233 (2019). https://doi.org/10.1016/j.jcou.2019.05.016
  58. Z. M. Sun, W. Fang, L. Zhao, H. Chen, X. He, W. X. Li, P. Tian and Z. H. Huang, Environ. Int., 130, 104898 (2019). https://doi.org/10.1016/j.envint.2019.06.008