• Title/Summary/Keyword: hydrothermal extraction

Search Result 34, Processing Time 0.023 seconds

Antimicrobial, Antioxidative, Elastase and Tyrosinase Inhibitory Effect of Supercritical and Hydrothermal Asparagopsis Armata Extract

  • Lee, Kwang Won;Heo, Soo Hyeon;Lee, Jinseo;Park, Su In;Kim, Miok;Shin, Moon Sam
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.231-240
    • /
    • 2020
  • In this paper, we present to evaluate physiological activity of Asparagopsis armata extraction. After extraction with Asparagopsis armata using hydrothermal and supercritical carbon dioxide, various physiological activities were examined. The total concentration of polyphenol compounds was determined to be 18.85 mg/g of hydrothermal Asparagopsis armata extraction and 14.74 mg/g of supercritical Asparagopsis armata extraction. In DPPH radical scavenging assay, ascorbic acid was used as positive antioxidant control. In ABTS radical scavenging assay, ascorbic acid was used as positive antioxidant control. The percentage of inhibition and IC50 were measured. The IC50 of Asparagopsis armata extraction is 261.44ppm and the IC50 of supercritical Asparagopsis armata extraction is 153.98 ppm. The elastase inhibitory assay showed concentration dependence and the IC50 of hydrothermal Asparagopsis armata extraction is 3387 ppm and the IC50 of supercritical Asparagopsis armata extraction is higher than 2500 ppm. In mushroom tyrosinase inhibition experiments, tyrosinase inhibition's IC50 of supercritical Asparagopsis armata extraction was 248.06. In the SOD-like experiments, the concentration-dependent results were showed and IC50 of hydrothermal Asparagopsis armata extraction is 845.29 ppm. In the antimicrobial experiments, maximum clear zones of supercritical Asparagopsis armata extraction represented 23.00 mm in Propionibacterium acnes. In the other hand, in experiments with the same conditions, hydrothermal Asparagopsis armata extraction had no effect in all strains.

A comparison study of extraction methods for bio-liquid via hydrothermal carbonization of food waste

  • Bang, YeJin;Choi, Minseon;Bae, Sunyoung
    • Analytical Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.112-121
    • /
    • 2018
  • The hydrothermal carbonization method has received great attention because of the conversion process from biomass. The reaction produces various products in hydrochar, bio-liquid, and gas. Even though its yield cannot be ignored in amount, it is difficult to find research papers on bio-liquid generated from the hydrothermal carbonization reaction of biomass. In particular, the heterogeneity of feedstock composition may make the characterization of bio-liquid different and difficult. In this study, bio-liquid from the hydrothermal carbonization reaction of food wastes at $230^{\circ}C$ for 4 h was investigated. Among various products, fatty acid methyl esters were analyzed using two different extraction methods: liquid-liquid extraction and column chromatography. Different elutions with various solvents enabled us to categorize the various components. The eluents and fractions obtained from two different extraction methods were analyzed by gas chromatography with a mass spectrometer (GC/MS). The composition of the bio-liquid in each fraction was characterized, and seven fatty acid methyl esters were identified using the library installed in GC/MS device.

The Synthesis of Kaolinitic Clay Minerals from Domestic Diatomite by Hydrothermal Process (국내산 규조토의 수열반응에 의한 Kaolinite질 인공점토의 합성에 관한 연구)

  • 김남일;박계혁;정창주
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1401-1413
    • /
    • 1994
  • The synthesis of kaolinite mineral from domestic diatomite for silica resource, commercial vailable gibbsite or alumina for alumina resource were made under various hydrothermal treatment, and the sythetic effect of acidic mineralizers, temperature treatment with time duration, particle size of alumina on formation of kaolinite mineral and the plastic properties of synthesized kaolinite were investigated. The various acidic mineralizers which are HCl, HNO3, H2SO4 and Oxalic acid were employed for hydrothermal reaction in the range of 0.01 mol/ι to 2 mol/ι concentration of each mineralizers. It was found that HCl in the level of 1 mol/ι solution produced highly yields of well-crystallized and platy form kaolinite mineral and gave the most effective extraction of iron oxide, compared to that of others, that HNO3 produced highly yield of kaolinite but lower extraction of iron oxide, that H2SO4 produced low yield of kaolinite and formed alunite mineral, and that oxialic acid formed spherical crystalline kaolinite and gave low extraction of iron oxide. Moreover, it showed that kaolinite minerals were well synthesized in a wide range of less than 2 mol/ι acids, but were poorly synthesized at more than 2 mol/ι acids. However, boehmite and kaolinite were coexistently formed in the temperature range of 18$0^{\circ}C$ and 20$0^{\circ}C$ when the calcined diatomite and gibbsite were involved. The well-ordered kaolinite mineral as a platy form was highly synthesized in the temperature range of 220 and 24$0^{\circ}C$, when the same marterials as above were used with treatment of 1 mol/ι HCl solution. The results also revealed that the size of crystalline platy form kaolinite, synthesized from alumina and calcined diatomite with treatment in 1 mol/ιHCl solution at 24$0^{\circ}C$, was much larger than that of gibbsite and calcined diatomite shown previously, and that kaolinite and corundum minerals were coexistently formed under any hydrothermal treatment conditions. The plasticity of synthesized kaolinite from under 2 ${\mu}{\textrm}{m}$ alumina and calcined diatomite was very poor, and that of the synthesized kaolinite from raw diatomite and gibbsite gave higher than that of calcined diatomite and gibbsite.

  • PDF

Energy Performance Comparison of Electric Heater and Geothermal Source Heat Pump type Agricultural Hot Air Dryers (전기히터식 및 지열원 히트펌프식 농산물 열풍건조기의 에너지 성능 비교)

  • Yang, Won Suk;Kim, Young Il;Park, Seung Tae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.7-12
    • /
    • 2018
  • Energy performance of electric heater and geothermal source heat pump type hot air dryers are compared in this study. For set temperatures of $30^{\circ}C$, $35^{\circ}C$ and $40^{\circ}C$, radish is dried from initial mass 60 kg until it gets 5 kg, where the difference equals the amount of water removed. As set temperature is increased, drying time is shortened for both electric heater and heat pump types, however energy efficiency is decreased due to increasing electricity consumption. Moisture extraction rate(MER) of electric heater is 2.58~2.84 kg/h, and for heat pump type 2.56~2.71 kg/h, showing little difference between the two types. Specific moisture extraction rate (SMER) of electric heater is 0.94~0.96 kg/kWh, and for heat pump type 1.72~2.21 kg/kWh. SMER of heat pump type is greater by 0.78~1.25 kg/kWh than the electric heater hot air dryer, which is 1.8~2.3 times better in terms of energy efficiency.

Deriving Optimal Conditions of Hydrothermal Reaction for Stabilizing Heavy Metals in Contaminated Dredged Soil (오염준설토의 중금속 안정화를 위한 Hydrothermal Reaction의 최적 조건 도출)

  • Lee Sun-Ju;An Hyeon-Kyu;Cho Woori;Kim Su-Hee;Lee Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.63-71
    • /
    • 2024
  • Hydrothermal Reaction (HTR) was applied for the stabilization of contaminated soil with heavy metals, and then the test determined the optimal conditions for HTR. After HTR, the concentration of heavy metals in the contaminated soil increased. However, it was observed that the leachability potential significantly decreased as determined by TCLP and SPLP tests. This decrease was attributed to a decline in fractions 1-2 and an increase in fractions 3-4 as revealed by sequential extraction procedure. Due to the mineralogical characteristics of the dredged soil, distinct changes were not evident in the five-stage fraction. Therefore, it is deemed necessary to understand the chemical and mineralogical characteristics of the target soil for HTR application in order to selectively address contaminants. Comparison among operating conditions determined the optimal condition to be at 240℃ for one hour.

Tyrosinase Inhibitory Activity and Neuronal Cell Protection of Hydrothermal Extracts from Watermelons (수박 열수 추출물의 Tyrosinase 저해능과 신경세포 보호효과)

  • Heo, Da-Jeong;Kim, Su-Jung;Choi, Ae-Ran;Park, Hae-Ryong;Lee, Seung-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1707-1711
    • /
    • 2013
  • In our study, each part (flesh, white rind, and green rind) of watermelon was extracted using hydrothermal extraction method at temperatures ranging from 100 to $300^{\circ}C$ at the intervals of 10, 30, and 60 min. We found that hydrothermal treatment has a significant bearing not only on tyrosinase inhibitory activity but also on neuronal cell protection of watermelon parts. The peak tyrosinase inhibitory activity (about 93%) was observed in both the flesh and green rind extracts at $300^{\circ}C$ for 60 min. In addition, we observed that hydrothermal extracts of watermelon parts at $300^{\circ}C$ for 60 min also evidenced significant protection effect for neuronal cell against $H_2O_2$ in a concentrationdependent manner. The results of this study confirm that hydrothermal treatment may be an efficient processing method for the purpose of obtaining potent bioactive substances from watermelon.

Analysis of fatty acid methyl ester in bio-liquid by hollow fiber-liquid phase microextraction

  • Choi, Minseon;Lee, Soyoung;Bae, Sunyoung
    • Analytical Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.174-181
    • /
    • 2017
  • Bio-liquid is a liquid by-product of the hydrothermal carbonization (HTC) reaction, converting wet biomass into solid hydrochar, bio-liquid, and bio-gas. Since bio-liquid contains various compounds, it requires efficient sampling method to extract the target compounds from bio-liquid. In this research, fatty acid methyl ester (FAME) in bio-liquid was extracted based on hollow fiber supported liquid phase microextraction (HF-LPME) and determined by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography/Mass Spectrometry (GC/MS). The well-known major components of biodiesel, including methyl myristate, palmitate, methyl palmitoleate, methyl stearate, methyl oleate, and methyl linoleate had been selected as standard materials for FAME analysis using HF-LPME. Physicochemical properties of bio-liquid was measured that the acidity was 3.30 (${\pm}0.01$) and the moisture content was 100.84 (${\pm}3.02$)%. The optimization of HF-LPME method had been investigated by varying the experimental parameters such as extraction solvent, extraction time, stirring speed, and the length of HF at the fixed concentration of NaCl salt. As a result, optimal conditions of HF-LPME for FAMEs were; n-octanol for extraction solvent, 30 min for extraction time, 1200 rpm for stirring speed, 20 mm for the HF length, and 0.5 w/v% for the concentration of NaCl. Validation of HF-LPME was performed with limit of detection (LOD), limit of quantitation (LOQ), dynamic range, reproducibility, and recovery. The results obtained from this study indicated that HF-LPME was suitable for the preconcentration method and the quantitative analysis to characterize FAMEs in bio-liquid generated from food waste via HTC reaction.

Extraction of Active Compounds from Angelica gigas using Supercritical Carbon Dioxide and its Physiological Activity (초임계 이산화탄소를 이용한 참당귀 유효 성분의 추출 및 생리활성 효능)

  • Park, Su In;Heo, Soo Hyeon;Lee, Jinseo;Shin, Moon Sam
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.206-212
    • /
    • 2021
  • This study aimed to maximize the efficacy of Angelica gigas by finding a more effective way to extract active compounds from Angelica gigas. After extracting Angelica gigas by hydrothermal, ethanol, and supercritical carbon dioxide extraction methods, analysis of decursin and decursinol angelate content, quantification of total polyphenol content, and evaluation of efficacy of antioxidant, whitening, and antibacterial were conducted. The content of decursin and decursinol angelate was very high at 38.65% of the supercritical carbon dioxide extract, and the total polyphenol content was high in the order of hydrothermal extract, ethanol extract and supercritical carbon dioxide extract, but the difference was relatively small. The antioxidant effects were consistent with the total polyphenol content, and the antibacterial effects were consistent with the decursin and decursinol angelate content. In other words, through this study, we found that the optimal method for extracting active compounds from Angelica gigas is the supercritical carbon dioxide extraction method.

Fabrication of K-PHI Zeolite Coated Alumina Hollow Fiber Membrane and Study on Removal Characteristics of Metal Ions in Lignin Wastewater

  • Zhuang, XueLong;Shin, Min Chang;Jeong, Byeong Jun;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.174-179
    • /
    • 2021
  • Recently, hybrid coal research is underway to upgrade low-grade coal. The hybrid coal is made by mixing low-grade coal with bioliquids such as molasses, sugar cane, and lignin. In the case of lignin used here, a large amount of lignin is included in the wastewater of the papermaking process, and thus, research on hybrid coal production using the same is attracting attention. However, since a large amount of metal ions are contained in the lignin wastewater from the papermaking process, substances that corrode the generator are generated during combustion, and the amount of fly ash is increased. To solve this problem, it is essential to remove metal ions in the lignin wastewater. In this study, metal ions were removed by ion exchange with a alumina hollow fiber membrane coated with K-Phillipsite (K-PHI) zeolite. The alumina hollow fiber membrane used as the support was prepared by the nonsolvent induced phase separation (NIPS) method, and K-PHI seeds were prepared by hydrothermal synthesis. The prepared K-PHI seed was seeded on the surface of the support and coated by secondary growth hydrothermal synthesis. The characteristic of prepared coating membrane was analyzed by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDX), and the concentration of metal ions before and after ion exchange was measured by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). The extraction amount of K+ is 86 mg/kg, and the extraction amount of Na+ is 54.9 mg/kg. Therefore, K-PHI zeolite membrane has the potential to remove potassium and sodium ions from the solution and can be used in acidic lignin wastewater.

Anti-Biofilm Activity of Origanum Vulgare Supercritical Fluid Extracts and Cosmetic Active Ingredients Development (오레가노 초임계추출물의 황색포도상구균 바이오필름 형성 억제능을 이용한 기능성 화장품 소재의 개발)

  • Park, Shinsung;Lee, Kwang Won;Park, Su In;Shin, Moon Sam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.605-614
    • /
    • 2022
  • In this study, oregano was extracted by supercritical extraction and hydrothermal extraction method. In vitro experiments such as antimicrobial and antioxidant activity test were performed. As a result of the disc diffusion method, only the supercritical extracts formed a clear zone. The MIC for S. aureus was found only in the supercritical fluid extracts and it was 1000 ㎍/mL. The hydrothermal extract's MIC is 125 ㎍/mL for C. acnes. Through biofilm inhibition assay, we found that the supercritical fluid oregano extracts inhibit the biofilm of S. aureus by more than 70% even at low concentrations of 125 ㎍/mL. On the other hand, the antioxidant ability of the hydrothermal extract was better than that of the supercritical fluid extracts. Furthermore, we tried to make a skincare ingredient for atopic dermatitis by utilizing the S. aureus biofilm inhibitory ability of oregano supercritical fluid extracts. Liposome was used to overcome the low solubility of the oregano supercritical fluid extracts and increase stability.