DOI QR코드

DOI QR Code

Analysis of fatty acid methyl ester in bio-liquid by hollow fiber-liquid phase microextraction

  • Choi, Minseon (Department of Chemistry, Seoul Women's University) ;
  • Lee, Soyoung (Department of Chemistry, Seoul Women's University) ;
  • Bae, Sunyoung (Department of Chemistry, Seoul Women's University)
  • Received : 2017.07.28
  • Accepted : 2017.08.16
  • Published : 2017.08.25

Abstract

Bio-liquid is a liquid by-product of the hydrothermal carbonization (HTC) reaction, converting wet biomass into solid hydrochar, bio-liquid, and bio-gas. Since bio-liquid contains various compounds, it requires efficient sampling method to extract the target compounds from bio-liquid. In this research, fatty acid methyl ester (FAME) in bio-liquid was extracted based on hollow fiber supported liquid phase microextraction (HF-LPME) and determined by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography/Mass Spectrometry (GC/MS). The well-known major components of biodiesel, including methyl myristate, palmitate, methyl palmitoleate, methyl stearate, methyl oleate, and methyl linoleate had been selected as standard materials for FAME analysis using HF-LPME. Physicochemical properties of bio-liquid was measured that the acidity was 3.30 (${\pm}0.01$) and the moisture content was 100.84 (${\pm}3.02$)%. The optimization of HF-LPME method had been investigated by varying the experimental parameters such as extraction solvent, extraction time, stirring speed, and the length of HF at the fixed concentration of NaCl salt. As a result, optimal conditions of HF-LPME for FAMEs were; n-octanol for extraction solvent, 30 min for extraction time, 1200 rpm for stirring speed, 20 mm for the HF length, and 0.5 w/v% for the concentration of NaCl. Validation of HF-LPME was performed with limit of detection (LOD), limit of quantitation (LOQ), dynamic range, reproducibility, and recovery. The results obtained from this study indicated that HF-LPME was suitable for the preconcentration method and the quantitative analysis to characterize FAMEs in bio-liquid generated from food waste via HTC reaction.

Keywords

References

  1. S. M. Heilmann, H. T. Davis, L. R. Jader, P. A. Lefebvre, M. J. Sadowsky, F. J. Schendel, M. G. Von Keitz, and K. J. Valentas, Biomass Bioenergy, 34, 875-882 (2010). https://doi.org/10.1016/j.biombioe.2010.01.032
  2. S. K. Hoekman, A. Broch, C. Robbins, B. Zielinska, and L. Felix, Biomass Conversion and Biorefinery, 3, 113-126 (2013). https://doi.org/10.1007/s13399-012-0066-y
  3. L. Xiao, Z. Shi, F. Xu, and R. Sun, Bioresour. Technol., 118, 619-623 (2012). https://doi.org/10.1016/j.biortech.2012.05.060
  4. K. Chan, L. Van Zwieten, I. Meszaros, A. Downie, and S. Joseph, Soil Res., 45, 629-634 (2008).
  5. J. A. Libra, K. S. Ro, C. Kammann, A. Funke, N. D. Berge, Y. Neubauer, M. Titirici, C. Fuhner, O. Bens, and J. Kern, Biofuels, 2, 71-106 (2011).
  6. D. Mohan, A. Sarswat, Y. S. Ok, and C. U. Pittman Jr., Bioresour. Technol., 160, 191-202 (2014). https://doi.org/10.1016/j.biortech.2014.01.120
  7. G. W. Huber, S. Iborra, and A. Corma, Chem. Rev., 106, 4044-4098 (2006). https://doi.org/10.1021/cr068360d
  8. G. Knothe, Fuel Process Technol., 86, 1059-1070 (2005). https://doi.org/10.1016/j.fuproc.2004.11.002
  9. G. Knothe, Energ. Fuel., 22, 1358-1364 (2008). https://doi.org/10.1021/ef700639e
  10. S. S. Toor, L. Rosendahl, and A. Rudolf, Energy, 36, 2328-2342 (2011). https://doi.org/10.1016/j.energy.2011.03.013
  11. F. Ates, E. Putun, and A. E. Putun, J. Anal. Appl. Pyrolysis, 71, 779-790 (2004). https://doi.org/10.1016/j.jaap.2003.11.001
  12. D. Mohan, C. U. Pittman, and P. H. Steele, Energ. Fuel., 20, 848-889 (2006). https://doi.org/10.1021/ef0502397
  13. N. M. Bennett, S. S. Helle, and S. J. B. Duff, Bioresour. Technol., 100, 6059-6063 (2009). https://doi.org/10.1016/j.biortech.2009.06.067
  14. F. Mud, F. Van Geel, R. Venderbosch, and H. Heeres, Sep. Sci. Technol., 43, 3056-3074 (2008). https://doi.org/10.1080/01496390802222509
  15. S. Dadfarnia, and A. M. Haji Shabani, Anal. Chim. Acta., 658, 107-119 (2010). https://doi.org/10.1016/j.aca.2009.11.022
  16. H. Liu, and P. K. Dasgupta, Anal. Chem., 68, 1817-1821 (1996). https://doi.org/10.1021/ac960145h
  17. M. A. Jeannot, F. F. Cantwell, Anal. Chem., 68, 2236-2240 (1996). https://doi.org/10.1021/ac960042z
  18. M. A. Bello-Lopez, M. Ramos-Payan, J. A. Ocana-Gonzalez, R. Fernandez-Torres, and M. Callejon-Mochon, Anal. Lett., 45, 804-830 (2012). https://doi.org/10.1080/00032719.2012.655676
  19. J. Lee, H. K. Lee, K. E. Rasmussen, and S. Pedersen-Bjergaard, Anal. Chim. Acta., 624, 253-268 (2008). https://doi.org/10.1016/j.aca.2008.06.050
  20. L. Chimuka, E. Cukrowska, M. Michel, and B. Buszewski, TrAC Trends in Anal. Chem., 30, 1781-1792 (2011). https://doi.org/10.1016/j.trac.2011.05.008
  21. M. Saraji, M. T. Jafari, and H. Sherafatmand, J. Chromatogr. A., 1217, 5173-5178 (2010). https://doi.org/10.1016/j.chroma.2010.06.035
  22. S. Yu, Q. Xiao, B. Zhu, X. Zhong, Y. Xu, G. Su, and M. Chen, J. Chromatogr. A., 1329, 45-51 (2014). https://doi.org/10.1016/j.chroma.2014.01.002
  23. J. Abulhassani, J. L. Manzoori, and M. Amjadi, J. Hazard. Mater., 176, 481-486 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.054
  24. G. H. Siang, A. Makahleh, B. Saad, and B. P. Lim, J. Chromatogr. A., 1217, 8073-8078 (2010). https://doi.org/10.1016/j.chroma.2010.10.052
  25. G. Ouyang, W. Zhao, and J. Pawliszyn, J. Chromatogr. A., 1138, 47-54 (2007). https://doi.org/10.1016/j.chroma.2006.10.093
  26. M. R. Khalili Zanjani, Y. Yamini, S. Shariati, and J. A. Jonsson, Anal. Chim. Acta., 585, 286-293 (2007). https://doi.org/10.1016/j.aca.2006.12.049