• Title/Summary/Keyword: hydrophobic matter

Search Result 73, Processing Time 0.024 seconds

Effect of coagulation conditions on ultrafiltration for wastewater effluent

  • Maeng, Sung Kyu;Timmes, Thomas C.;Kim, Hyun-Chul
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.185-199
    • /
    • 2017
  • Low-pressure membrane filtration is increasingly used for tertiary treatment of wastewater effluent organic matter (EfOM), mainly comprising organic base/neutral compounds. In-line coagulation with underdosing, charge neutralization, and sweep floc conditions prior to ultrafiltration (UF) was studied to determine removals of the EfOM components and consequent reduction of fouling using polyethersulfone membranes. Coagulation and UF substantially reduced fouling for all coagulation conditions while removing from 7 to 38% of EfOM organic acids. From 7 to 16% of EfOM organic base/neutrals were removed at neutral pH but there was no significant removal for slightly acid coagulation conditions even though fouling was substantially reduced. Sweep floc produced the lowest resistance to filtration but may be inappropriate for in-line use due to the large added volume of solids. Charge-neutralization resulted in poor recovery of the initial flux with hydraulic cleaning. Under-dosing paralleled sweep floc in reducing hydraulic resistance to filtration (for sub-critical flux) and the initial flux was also easily recovered with hydraulic cleaning. Hydrophobic and hydrophilic base/neutrals were identified on the fouled membranes but as previously reported the extent of fouling was not correlated with accumulation of organic base/neutrals.

Effect of Pretreatment Process on Hybrid Membrane Filtration Performance (원수의 물리.화학적 특성에 따른 막 분리 공정의 전처리 공정 적용성 평가)

  • Jung, Chul-Woo;Son, Hee-Jong;Bae, Sang-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.613-619
    • /
    • 2006
  • The objectives of this research are to evaluate the effect of membrane materials, particulate matter and membrane pore size on permeate flux. It was shown that the removal efficiency of high MW organic matter more than 10 kDa was lower than that of low MW organic matter for $MIEX^{(R)}$ process. For the change of permeate flux by the pretreatment process, $MIEX^{(R)}+UF$ process showed high removal efficiency of organic matter as compared with coagulation+UF processes, but high reduction rate of permeate flux was presented through the reduction of removal efficiency of high MW organic matter. The pretreatment of the raw water significantly reduced the fouling of the hydrophilic membrane, but did not decrease the flux reduction of the hydrophobic membrane. Flux decline on MF process increased due to the pore clogging, while the permeate flux decline of UF process decreased due to the formation of cake layer. It was shown that particle matter was not effect on MIEX+membrane process. But, for coagulation+membrane process, particle matter was important factor on permeate flux.

Evaluation of Natural Organic Matter Treatability and Disinfection By-Products Formation Potential using Model Compounds (정수처리 공정에서 모델 물질들을 이용한 천연유기물질 처리능 및 소독부산물 생성능 평가)

  • Son, Hee-Jong;Jung, Jong-Moon;Choi, Jin-Taek;Son, Hyung-Sik;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1153-1160
    • /
    • 2013
  • While a range of natural organic matter (NOM) types can generate high levels of disinfection by-products (DBPs) after chlorination, there is little understanding of which specific compounds act as precursors. Use of eight model compounds allows linking of explicit properties to treatability and DBP formation potential (DBPFP). The removal of model compounds by various treatment processes and their haloacetic acid formation potential (HAAFP) before and after treatment were recorded. The model compounds comprised a range of hydrophobic (HPO) and hydrophilic (HPI) neutral and anionic compounds. On the treatment processes, an ozone oxidation process was moderate for control of model compounds, while the HPO-neutral compound was most treatable with activated carbon process. Biodegradation was successful in removing amino acids, while coagulation and ion exchange process had little effect on neutral molecules. Although compared with the HPO compounds the HPI compounds had low HAAFP the ozone oxidation and biodegradation were capable of increasing their HAAFP. In situations where neutral or HPI molecules have high DBPFP additional treatments may be required to remove recalcitrant NOM and control DBPs.

Characteristics of Natural Organic Matter (NOM) on Han River and Criterion of Enhanced Coagulation (한강원수 자연유기물의 특성분석 및 강화응집 기준 평가)

  • Jeong, Youngmi;Kweon, Jihyang;Lee, Sanghyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.653-661
    • /
    • 2007
  • The Disinfectants/Disinfection By-products (D/DBP) Rule proposed by the US Environmental Protection Agency requires the implementation of enhanced coagulation as a control strategy for natural organic matter (NOM) removal and as a means of limiting the formation of all DBPs, i.e., not just the trihalomethanes and haloacetica acids. To control DBP formation, several best available technologies (BATs) were determined for removal of DBPs and DBP precursors. The enhanced coagulation is one of the BATs for DBP precursors removal. Treatment facilities that achieve a specified percent removal of total organic carbon (TOC) prior to the application of a continuous disinfectant or that achieve a residual TOC concentration < 2mg/L prior to the application of a continuous disinfectant are considered to be in compliance with enhanced coagulation. The enhanced coagulation was applied to raw water in Korea, the Han River. Raw water were examined and effects of different raw water qualities on enhanced coagulation were investigated. Three analyses were used for raw water characteristics, water quality measurement, molecular weight distributions, hydrophobic/hydrophilic fractionation. The Han River had the relatively low alkalinity and low organic carbon concentration. The results of molecular weight distributions showed significant portions of low molecular weight organics, which is very different from most water in USA. The alum doses for the required TOC removal guided from USEPA manual were quite low (i.e. 10~30 mg/L alum) for the water, probably due to the specific water quality of the Han River.

The Removal of Natural Organic Matter and Disinfection By-Product Precursor by Ozone (오존처리에 의한 천연유기물질 변화 및 염소 소독부산물 전구물질 제어)

  • Son, Hee-Jong;Roh, Jae-Soon;Kim, Sang-Goo;Kang, Lim-Seok;Lee, Yong-Doo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1099-1107
    • /
    • 2005
  • The purpose of this study was to find the transformation of organic matter as well as chlorine by product formation potential with ozone dosage. The removal percents of $UV_{254}$ and DOC were $23%{\sim}65%$ and $2%{\sim}15%$ and THMFP and HAAFP were $17%{\sim}52%$ and $9%{\sim}29%$ respectively at $0.5{\sim}3\;mgO_3/mgDOC$ ozone dosage. The hydrophobic and transphobic organic matter were reduced to $37%{\sim}68%$ and $35%{\sim}64%$, on the other hand the hydrophilir organic matter was increased to $40%{\sim}49%$ at $0.5{\sim}3\;mgO_3/mgDOC$ ozone dosage. The produced THMFP and HAAFP from the hydrophobic and transphilic organic matter were decreased greatly with increasing ozone dosage but these by products were increased in the hydrophilic matter. The produced THMFP and HAAFP per unit DOC were decreased and reactivity was reduced greatly with increasing crone dosage. The removal rate of THMFP per unit DOC was much higher than HAAFP by ozone treatment. The Br-THMFP per unit DOC was much more removed than chloroformFP per unit DOC with increasing ozone dosage. and The removal rate of TCAAFP per unit DOC was increased with increasing ozone dosage but TCAAFP was not affected by ozone treatment. Br-HAAFP was decreased at $1\;mgO_3/mgDOC$ ozone dosage but was not more removed above $1\;mgO_3/mgDOC$ ozone dosage. Br-HAAFP had lower removal effect than Br-THMFP by ozone treatment. The optimal ozone dosage can be determined about $1\;mgO_3/mgDOC$ by considering both disinfection by product formation and economical efficiency.

Drying Shrinkage Properties of Latex Modified Concrete (라텍스 개질 콘크리트의 건조수축특성)

  • Yun, Kyong-Ku;Hong, Chang-Woo;Lee, Joo-Hyung
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.301-306
    • /
    • 2001
  • Drying shrinkage cracking which may be caused by the relatively large specific surface is a matter of grave concern for latex modified concrete(LMC) overlay and rapid-setting cement latex modified concrete(RSLMC) overlay. Therefore, the purpose of this dissertation was to study the drying shrinkage properties of LMC and RSLMC with the main experimental variables such as cement types(ordinary portland cement, rapid setting cement), latex contents(0, 5, 10, 15, 20%), W-C ratios, and curing days at a same controlled environment of 60% of relative humidity and $20^{\circ}C$ of temperature. Test results revealed that the drying shrinkage of latex modified concrete(LMC), rapid-setting cement latex modified concrete(RSLMC) was considerably lower than that of ordinary portland cement concrete(OPC), rapid-setting cement concrete(RSC), respectively. This may be attributed to the interlocking of hydrated cement and aggregates by a film of latex particles, water retention due to hydrophobic and colloidal properties of the latexes, resulting in reduced water evaporation.

  • PDF

Drying Shrinkage Properties of Latex Modified Concrete (라텍스개질 콘크리트의 건조수축특성)

  • 이훈재;김태경;김동호;김성환;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.151-156
    • /
    • 2002
  • Drying shrinkage cracking which may be caused by the relatively large specific surface is a matter of grave concern for latex modified concrete(LMC) overlay and rapid-setting cement latex modified concrete(RSLMC) overlay. LMC and RSLMC were studied for field applications very actively in terms of strength and durability in Korea. However, there were no considerations in drying shrinkage. Therefore, the purpose of this study was to investigate the drying shrinkage properties of LMC and RSLMC with the main experimental variables such as cement types(ordinary portland cement, rapid setting cement), latex contents(0, 5, 10, 15, 20%), W-C ratios, and curing days at a controlled environment of 60% of relative humidity and 2$0^{\circ}C$ of temperature. The drying shrinkage for specimens was measured with a digital dial gauge of Demec. The test results showed that the drying shrinkage of LMC and RSLMC were considerably lower than that of OPC and RSC, respectively. This might be attributed to the interlocking of hydrated cement and aggregates by a film of latex particles, water retention due to hydrophobic, and colloidal properties of the latexes resulting in reduced water evaporation.

  • PDF

Effect of Fractionated Organic Matter on Membrane Fouling (분류된 천연유기물질을 이용한 막 오염 특성 평가)

  • Lee, Byung-Gu;Son, Hee-Jong;Roh, Jae-Soon;Hwang, Young-Do;Jung, Chul-Woo;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1321-1326
    • /
    • 2005
  • As a results of this research, the Nakdong River consisted of 43% of hydrophobic fraction, 39% of hydrophilic fraction, and 18% of transphilic fraction. The hydrophobic fraction in this raw water was mostly fulvic acid. Fulvic acid comprised of 62% and the rest was humic acid(38%). There was more carboxylic acid functional roup(64%) than phenolic group(36%). HPI-N and HPI-C comprised of 17% and 22% in the hydrophilic portion, respectively. The results of the membrane fouling test using UF membrane according to NOM fractions. HPI-N caused more fouling than HPI-C. Humic acid caused more fouling than fulvic acid probably due to higher adsorption capacity. Since humic acid has higher adsorption capacity than fulvic acid, it would be more adsorbed onto the membrane pores. The carboxylic acid functional group caused more fouling than the phenolic group.

Transport of Colloids and Contaminant in Riverbank Filtration (강변여과에서 콜로이드 물질과 오염물의 거동에 관한 연구)

  • Lee Sang-Il;Kim Dae-Hwan;Lee Sang-Sin;You Sang-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.511-520
    • /
    • 2006
  • Riverbank filtration is a natural process, using alluvial aquifers to remove contaminants and pathogens in river water for the production of drinking water. In Korea, most of the drinking water is supplied by surface water in-take. However, maintaining the quality of the drinking water becomes more and more difficult due to the increase of contamination. In riverbank filtration, the understanding of contaminant transport is an important task for the production of high quality drinking water and for the maintenance of facilities. In this paper, the transport behavior of hydrophobic organic contaminants is investigated when contaminants coexist with dissolved organic matter (DOM) and bacteria. In the developed model, the aquifer is thought of as a four phase system: two mobile colloidal phases, an aqueous phase, and a stationary solid matrix phase. The model equations are solved numerically for various situations. Results indicate that the presence of colloidal matters can enhance the mobility of contaminant significantly and that partitioning coefficients play an important role in the process.

Formation of Organic Chloramines during Monochloramination of Natural Organic Matters (천연유기물과 모노클로라민의 반응시 유기성 클로라민 생성)

  • Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.604-608
    • /
    • 2014
  • This study investigated influence of dissolved organic nitrogen (DON) in natural organic matter (NOM) on the formation of organic chloramines upon monochloramination. Ratios of dissolved organic carbon (DOC) to DON of the 16 NOM isolates ranged from 7 to 47 mg-C/mg-N. Levels of organic chloramines maxed in 24 hours at $0.16mg-Cl_2/mg-N$ in average. The yields were relatively lower, but decay of organic chloramines were slower than those upon chlorination. Organic chloramines formed upon monochloramination decreased by 56% in average in 120 h. NOM with lower DOC/DON ratios formed more organic chloramines. NOM fractions such as hydrophobic, hydrophilic, transphilic, and colloidal did not significantly impact formation of organic chloramines. As the monochloramine doses increased, more organic chloramines were produced ($R^2=0.91$). Overestimation of disinfection capacity due to the formation of organic chloramines may not be concerns for monochloramine systems since only 6% of monochloramine could be converted to organic chloramines upon monochloramination of NOM.