• Title/Summary/Keyword: hydrolysis activity

Search Result 977, Processing Time 0.031 seconds

Angiotensin I Converting Enzyme Inhibitory Activity of Krill (Euphausia superba) Hydrolysate

  • Kim Dong-Soo;Park Douck-Choun;Do Jeong-Ryong
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Angiotensin I converting enzyme inhibitory activities of shelled krill (Euphausia superba) hydrolysates by autolysis and by hydrolysis with commercial proteases were analyzed. Among the proteases, Alcalase was the most effective protease for the hydrolysis of krill considering the degree of hydrolysis $(87.5\%)$ and the ACE inhibitory activity $(60\%)$. Four hour hydrolysis suggested as the most suitable and economic. In order to establish the optimum hydrolysis condition of krill, degree of hydrolysis and ACE inhibitory activity as affected by Alcalase concentration and water amount added were statistically analyzed by response surface methodology (RSM). The optimum hydrolysis condition was $2.0\%$ Alcalase hydrolysis in 2 volumes (v/w) of water at $55\% for 4 hr. The hydrolysate prepared from the optimum hydrolysis condition was fractionated by molecular weight. The lower molecular weight fraction showed the higher ACE inhibitory activity. $IC_{50}$ of the fraction under 500 Da was 0.57mg protein/mL.

Characterization of Kinetics of Urea Hydrolysis in A Newly Reclaimed Tidal Soils

  • Kim, Hye-Jin;Park, Mi-Suk;Woo, Hyun-Nyung;Kim, Gi-Rim;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.84-90
    • /
    • 2011
  • It is imperative to study the hydrolysis of urea in high saline-sodic condition of a newly reclaimed tidal land in order to overcome the problems associated with use of urea fertilizer. The methodology adopted in this study tried to get a convenient way of estimating rate for N transformation needed in N fate and transport studies by reviewing pH and salt contents which can affect the microbial activity which is closely related to the rate of urea hydrolysis. The hydrolysis of urea over time follows first-order kinetics and soil urease activity in reclaimed soils will be represented by Michaelis-Menten-type kinetics. However, high pH and less microorganisms may delay the hydrolysis of urea due to decrease in urease activity with increasing pH. Therefore, the rate of urea hydrolysis should adopt $V_{max}$ referring enzyme activity ($E_0$) accounting for urease concentration which is indicative for urea hydrolysis, especially in a high saline and sodic soils.

Optimization of Enzymatic Hydrolysis Conditions for Production of Angiotensin-I Converting Enzyme Inhibitory Peptide from Casein

  • Do, Jeong-Ryong;Kim, Ki-Ju;Kim, Hyun-Ku;Kim, Young-Myoung;Park, Yeung-Beom;Lee, Yang-Bong;Kim, Seon-Bong
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.565-571
    • /
    • 2007
  • This study was carried out to investigate an optimum condition for the high angiotensin-l converting enzyme (ACE) inhibitory activity and the yield on enzyme concentration, casein concentration, and hydrolysis time. The optimum condition was performed by response surface methodology for acquirement of casein hydrolysate of milk which shows high ACE inhibitory activity, Among 8 tested enzymes, Protamex showed the highest activation degree with 77.03 unit/g from casein. Their hydrolysis degrees of flovourzyme 500MG, protamex, mixture from 1% casein were 85.5, 88.5, and 93.5%, respectively. The ranges of enzyme concentration (0.25-1.25%), casein concentration (2.5-12.5%), and hydrolysis time (20-100 min) as 3 independent variables through preliminary experiments of the yield of casein hydrolysate and ACE inhibitory activity, and it shows optimum response surface at a saddle point. It shows enzyme concentration (0.64%), casein concentration (8.38%), and hydrolysis time (55.81 min) in the yield aspect and showed the highest activity at enzyme concentration (0.86%), casein concentration (5.97%), and hydrolysis time (63.86 min) in ACE inhibitory aspect. The $R^2$ value of a fitted optimum formula on the hydrolysis yield was 0.9751 as the significant level of 1%. The $R^2$ value of a fitted optimum formula on ACE inhibitory activity is 0.8398, and the significance is recognized in the range of 5%.

Optimization of Alcalase for Krill Byproduct Hydrolysis and Antioxidative Activities by Response Surface Methodology

  • Kim, Kyoung-Myo;Lee, Da-Sun;Nam, Min-Hee;Yoo, Hong-Seok;Kim, Seon-Bong;Chun, Byung-Soo;Lee, Yang-Bong
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.316-321
    • /
    • 2010
  • Krill byproduct was hydrolyzed with Alcalase 2.4L to produce functional ingredients for high antioxidative activities against 1,1-dimethyl-2-picryl-hydrazyl (DPPH) radical and Fe. The objective of this study was to investigate the optimum condition for degree of hydrolysis and antioxidative activity of enzymatic hydrolysate produced with the commercial Alcalase using response surface methodology (RSM) with a central composite rotatable design (CCRD). The ranges of independent variables were pH 7.6~10.4 for initial pH and $50.9{\sim}79.1^{\circ}C$ for hydrolysis temperature and their dependent variables were degree of hydrolysis, Brix, amount of phenolic compounds, DPPH-scavenging activity and Fe-chelating activity. RSM with CCRD was well designed to investigate the optimum condition for functional ingredients with high antioxidative activities using Alcalase 2.4L because of their high $R^2$ values of the range of 0.93~0.99 except the $R^2$ value of 0.50 for the amount of total phenolic compounds. The optimum hydrolysis conditions were pH 9.5 and $62^{\circ}C$ for degree of hydrolysis (DH) and pH 9.1 and $64^{\circ}C$ for DPPH-scavenging activity by response surface methodology. The yield of DH and DPPH-scavenging activity were $14.1{\pm}0.5%$ and $10.5{\pm}0.2%$, respectively. It is advantageous to determine the optimum hydrolysis conditions of krill and its by-products for the creation of different kinds of food products, as well as to increase the usage of marine protein sources.

Hydrolysis Characteristics of Amylase from Alkaline-Tolerant Bacillus sp. on the Raw Starch (알칼리 내성 Bacillus sp.가 생산하는 Amylase의 생전분 분해 특성)

  • 이신영;조택상
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.621-625
    • /
    • 1998
  • The raw starch hydrolysis by amylase prepared from alkaline-tolerant Bacillus sp. were investigated. Degree of hydrolysis(%) of 5%(w/v) raw rice, corn and potato starch by this enzyme were about 40, 25 and 20%, respectively. The hydrolysis action on raw starch by change of blue value was similar to the action pattern of exo ${\beta}$-amylase. The hydrolysis products of rice starch were mainly glucose and maltose. Oligosaccarides were also detected. From the above results, this enzyme was considered as exo type ${\alpha}$-amylase. This enzyme activity on the raw starch and the gelatinized starch were 28.40 and 86.60 IU/mg protein, respectively, and the ratio of raw starch-digesting activity to gelatinized starch-digesting activity (raw starch digestivity) was about 32%. The Km values for the raw and the gelatinized starch were 4.22 and 3.0mg/mL, respectively, and the VmaX values were 0.20 and 0.31mg/mL/min, respectively.

  • PDF

Antioxidant and antimicrobial activities of different enzymatic hydrolysates from desalted duck egg white

  • Thammasena, Rommanee;Liu, Deng Cheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1487-1496
    • /
    • 2020
  • Objective: The objective of this study was to look for optimal preparation of hydrolysates of desalted duck egg white powder (DDEWP) by the three different proteases and to investigate their antioxidant and antimicrobial properties. Methods: DDEWP was hydrolyzed by three proteases, including pepsin (PEP), Bacillus spp. (BA) and natokinase (NAT) with three different enzyme concentrations (0.1%, 0.3%, and 0.5%), individually. The important key hydrolysis parameters such as hydrolysis degree, yield, antioxidant and antimicrobial activity were evaluated in this experiment. Results: The results showed that the degree of hydrolysis (DH) of all treatments increased with increasing hydrolysis time and protease concentrations. The antioxidant and antimicrobial activities of the hydrolysates were affected by type and concentration of protease as well as hydrolysis time. Hydrolysis of PEP significantly (p<0.05) obtained the highest yield of hydrolysates, however, both of BA and NAT showed substantially lower DH values and still did not exceed 5% by the end of hydrolysis. Among the different hydrolysates, PEP exhibited significantly higher 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity than BA and NAT. All DDEWP hydrolysates from PEP had low ferrous ion chelating activity (<37%) that was significantly lower than that of NAT (>37% to 92%) and BA (30% to 79%). Besides, DDEWP hydrolysates of PEP presented significantly higher reducing power than BA and NAT. In antimicrobial activities, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa were not effectively inhibited by any DDEWP hydrolysates of PEP except for Staphylococcus aureus. Especially, the excellent antibacterial activity against S. aureus only was displayed in DDEWP hydrolysates of PEP 0.1%. Conclusion: DDEWP hydrolysates from PEP demonstrated significantly better DH, yield, DPPH radical scavenging activity and reducing power, furthermore, had excellent inhibitory on S. aureus due to large clear zone and moderated inhibitory in bactericidal inhibition.

Characterization of Levan Hydrolysis Activity of Levansucrase from Zymomonas mobilis ATCC 10988 and Rahnella aquatilis ATCC 33071

  • Jang, Ki-Hyo;Kang, Soon-Ah;Kim, Chul-Ho;Lee, Jae-Cheol;Kim, Mi-Hyun;Son, Eun-Wha;Rhee, Sang-Ki
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.482-484
    • /
    • 2007
  • To investigate production and hydrolysis of levan, the levansucrase enzymes from Zymomonas mobilis ATCC 10988 and Rahnella aquatilis ATCC 33071 were used. The optimum temperature of R. aquatilis levansucrase for levan formation was $37^{\circ}C$, whereas that of Z. mobilis was $4^{\circ}C$, under the experimental conditions. Both levansucrases also catalyzed the reverse levan hydrolysis reaction. Levan hydrolysis reactions from both levansucrases were temperature dependent; high temperature ($20^{\circ}C$) was more favorable than low temperature ($4^{\circ}C$) by 4 times. Fructose was the only product from hydrolysis reaction by both levansucrases, showing that both levansucrases mediated the hydrolysis reaction of exo-enzyme acting. In both enzymes, initial levan hydrolysis activity was almost accounted to 1% of initial levan formation activity. The results allow the estimation of the fructose release rate in enzyme processing conditions.

Effects of Heat Treatment on Antioxidant Activity of Hydrolyzed Mung Beans (녹두 가수분해물의 항산화활성에 미치는 열처리 효과)

  • Kim, Min Young;Lee, Sang Hoon;Jang, Gwi Yeong;Kim, Hyun Young;Woo, Koan Sik;Hwang, In Guk;Lee, Junsoo;Jeong, Heon Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • This study was performed to investigate the antioxidant activity of mung beans with heat treatment at $130^{\circ}C$ for 2 h after acid hydrolysis. The browning index of heating after hydrolysis was 2.31 whereas heating before hydrolysis was 0.17. 5-hydromethyl-2-furaldehyde (5'-HMF) content was the highest value of 81.61 mg/g in heating after hydrolysis. The highest total polyphenol content (55.95 mg/g) occurred in heating after hydrolysis and this value was 6.4-fold higher than that of heating before hydrolysis (8.79 mg/g). 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity was the highest value of 22.19 mg AA eq/g sample in heating after hydrolysis whereas heating before hydrolysis was 1.75 mg AA eq/g sample.1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity was the highest value of 3.64 mg Trolox eq/g sample in heating after hydrolysis whereas heating before hydrolysis was not shown. These results suggest that heat treatment of mung beans for increasing the antioxidant activity could be effective after hydrolysis.

Hydrolysis of Olive Oil by Lipase, Immobilized on Hydrophobic Support

  • Jung, Ju-Young;Yun, Hyun-Shik;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.151-156
    • /
    • 1997
  • Two commercially available lipases, Lipase OF (non-specific lipase from Candida rugosa) and Lipolase 100T (1, 3-specific lipase from Aspergillus niger), were immobilized on insoluble hydrophobic support HDPE (high density polyethylene) by the physical adsorption method. Hydrolysis performance was enhanced by mixing a non-specific Lipase OF and a 1, 3-specific Lipolase 100T at a 2 : 1 ratio. The results also showed that the immobilized lipase maintained its activity at broader temperature ($25~55^{\circ}C$) and pH (4-8) ranges than soluble lipases. In the presence of organic solvent (isooctane), the immobilized lipase retained most of its activity in upto 12 runs of hydrolysis experiment. However, without organic solvent in the reaction mixture, the immobilized lipase maintained most of its activity even after 20 runs of hydrolysis experiment.

  • PDF

The Effect of Ginseng Saponins on the Activity of Lipoprotein Lipase in Vitro (Lipoprotein Lipase의 활성에 미치는 인삼 Saponin의 영향)

  • Paik, Tai-Hong;Kim, Hyo-Joon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.77-81
    • /
    • 1985
  • In order to investigate the effect of ginseng saponins on the activity of lipoprotein lipase, it was attempted to conform the enzymatic hydrolysis of chylomicron with post-heparin induced plasma lipoprotein lipase of normal rabbit in vitro. And the activity of lipoprotein llipase was determined by the quantitative determination of liberated free fatty acids on the hydrolysis of chylomicron. As the result, it was observed that the ginseng saponins accelerated the hydrolysis of chylomicron by post-heparin plasma in vitro. And the optimum concentration of ginseng saponins for the activity of the lipoprotein lipase in the 2% bovine serum albumin was $10^{-4}%$. But ginseng saponins on the hydrolysis of chylomicron was influenced by the presence and the absence of albumin. And the optimum concentration of albumin and Na-cholate on the activity of lipoprotein lipase was each of the $10^{-6}%$ albumin and 5mM Na-cholate. From these results, it seems that ginseng saponins might stimulate the intravascular hydrolysis of chylomicron.