• Title/Summary/Keyword: hydrogen storage materials

Search Result 261, Processing Time 0.024 seconds

Characteristics of Fluorine-Doped Tin Oxide Film Coated on SUS 316 Bipolar Plates for PEMFCs (ECR-MOCVD를 이용하여 연료 전지 분리판에 코팅된 FTO막의 특성 연구)

  • Park, Ji-Hun;Hudaya, C.;Jeon, Bup-Ju;Byun, Dong-Jin;Lee, Joong-Kee
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2011
  • Polymer electrolyte membrane fuel cells (PEMFCs) use the bipolar plate of various materials between electrolyte and contact electrode for the stable hydrogen ion exchange activation. The bipolar plate of various materials has representatively graphite and stainless steel. Specially, stainless steels have advantage for low cost and high product rate. In this study, SUS 316 was effectively coated with 600 nm thick F-doped tin oxide (SnOx:F) by electron cyclotron resonance-metal organic chemical vapor deposition and investigated in simulated fuel cell bipolar plates. The results showed that an F-doped tin oxide (SnOx:F) coating enhanced the corrosion resistance of the alloys in fuel cell bipolar plates, though the substrate steel has a significant influence on the behavior of the coating. Coating SUS 316 for fuel cell bipolar plates steel further improved the already excellent corrosion resistance of this material. After coating, the increased ICR values of the coated steels compared to those of the fresh steels. The SnOx:F coating seems to add an additional resistance to the native air-formed film on these stainless steels.

Hydrogen Desorption and Absorption Properties of MgH2, LiBH4, and MgH2 + LiBH4 Composite

  • Park, Hye Ryoung;Song, Myoung Youp
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.955-959
    • /
    • 2012
  • To increase the hydrogen storage capacity of Mg-based materials, a sample with a composition of 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ was prepared by planetary ball milling under hydrogen. The absorption and desorption properties of unmilled $MgH_2$, unmilled $LiBH_4$, and 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ were examined. At 648 K the unmilled $MgH_2$ desorbed 5.70 wt% for 60 min. The unmilled $LiBH_4$ desorbed 6.40 wt% H for 780 min at 673 K. The 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ sample desorbed 3.10 wt% H for 50 min, and 3.32 wt% H for 300 min at 623 K at the second cycle.

Development of Hydrogen-Storage Alloy by Mechanical Alloying of Mg and Ni (Mg과 Ni의 기계적인 합금화에 의한 수소 저장 합금의 개발)

  • Song, Myoung-Youp
    • Journal of Hydrogen and New Energy
    • /
    • v.7 no.2
    • /
    • pp.181-191
    • /
    • 1996
  • Samples with the compositions of Mg-10wt.%Ni and Mg-25wt.%Ni were prepared by mechanical alloying in a planetary mill. $Mg_2Ni$ phase was formed in the mixture with hydriding dehydriding cycling. The activation of Mg-10wt.%Ni and Mg-25wt.%Ni was completed after n=7 and n=6 around, respectively, at 583K, $0{\sim}8barH_2$. Mg-10wt.% Ni and Mg-25wt. %Ni are considered as excellent hydrogen-storage materials with very high hydriding rates, high dehydriding rates and relatively large hydrogen-storage capacity. The effets of mechanical alloying and hydriding dehydriding cycling are considered the augmentation in the density of active nucleation sites and the diminution in the particle size.

  • PDF

The Effect of Mechanical Grinding or Electrochemical Properties of $CaNi_5$ Hydrogen Storage Alloy ($CaNi_5$ 수소저장합금의 전기화학 특성에 미치는 MG 처리 효과)

  • Lee C. R.;Kang S. G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • The effect of the MG on the electrochemical charge-discharge properties of $CaNi_5$ hydrogen storage alloys was investigated under Ar and $H_2$ atmosphere. $CaNi_5$ alloy was partially decomposed to CaO and Ni phase during the MG process. The decomposition of $CaNi_5$ alloy was enhanced by the MG process which leads to crash and reformation of oxide layer on the alloy surface. As the MG process time increased, initial discharge capacity of the electrode was reduced, but the decay rate of the capacity compared to $CaNi_5$ alloys was slower. It may be described that the degradation of $MG-CaNi_5$ electrode was caused by the reduction of the reversible hydrogen reaction sites and increasing polarization resistance of hydrogen adsorption resulted from phase decomposition and disorder during the MG process, and/or by hydroxide formation during the electrochemical charge-discharge cycles.

A Study on the Design Safety of Type III High-Pressure Hydrogen Storage Vessel (Type III 고압수소저장용기의 설계 안전성 연구)

  • Park, Woo Rim;Jeon, Sang Koo;Kim, Song Mi;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.7-14
    • /
    • 2019
  • The type III vessel, which is used to store high-pressure hydrogen gas, is made by wrapping the vessel's liner with carbon fiber composite materials for strength performance and lightening. The liner seals the internal gas and the composite resists the internal pressure. The properties of the fiber composite material depends on the angle and thickness of the fiber. Thus, engineers should consider these various design variables. However, it significantly increases the design cost due to the trial and error under designing based on experience or experiments. And, for aluminum liners, fatigue loads due to using and charging could give a huge impact on the performance of the structure. However, fatigue failure does not necessarily occur in the position under the highest load in use. Therefore, for hydrogen storage vessel, fatigue evaluation according to design patterns is essential because stress distribution varies depend on composite layer patterns. This study performed an optimization analysis and evaluated a high-pressure hydrogen storage vessel to minimize these trial and error and improve the reliability of the structure, while simultaneously conducting fatigue assessment of all patterns derived from the optimization analysis process. The results of this study are thought to be useful in the strength improvement and life design of composite reinforced high-pressure storage vessels.

Improvement of Accuracy for Determination of Isosteric Heat of Hydrogen Adsorption (부피법을 이용한 저온 등량 수소 흡착열 측정법 개선)

  • Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.127-131
    • /
    • 2017
  • Isosteric heat of hydrogen adsorption is one of the most important parameters required to describe solid-state hydrogen storage systems. Typically, it is calculated from adsorption isotherms measured at 77K (liquid N2) and 87K (liquid Ar). This simple calculation, however, results in a high degree of uncertainty due to the small temperature range. Therefore, the original Sievert type setup is upgraded using a heating and cooling device to regulate the wide sample temperature. This upgraded setup allows a wide temperature range for isotherms (77K ~ 117K) providing a minimized uncertainty (error) of measurement for adsorption enthalpy calculation and yielding reliable results. To this end, we measure the isosteric heats of hydrogen adsorption of two prototypical samples: activated carbon and metal-organic frameworks (e.g. MIL-53), and compared the small temperature range (77~87K) to the wide one (77K ~ 117K).

Effects of Nickel and Iron Oxide Addition by Milling under Hydrogen on the Hydrogen-Storage Characteristics of Mg-Based Alloys

  • Song, Myoung Youp;Baek, Sung Hwan;Park, Hye Ryoung;Mumm, Daniel R.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.64-70
    • /
    • 2012
  • Samples of pure Mg, 76.5 wt%Mg-23.5 wt%Ni, and 71.5 wt%Mg-23.5 wt%Ni-5 wt%$Fe_2O_3$ were prepared by reactive mechanical grinding and their hydriding and dehydriding properties were then investigated. The reactive mechanical grinding of Mg with Ni is considered to facilitate nucleation and to shorten diffusion distances of hydrogen atoms. After hydriding-dehydriding cycling, the 76.5 wt%Mg-23.5 wt%Ni and 71.5 wt%Mg-23.5 wt%Ni-5 wt%$Fe_2O_3$ samples contained $Mg_2Ni$ phase. In addition to the effects of the creation of defects and the decrease in particle size, the addition of Ni increases the hydriding and dehydriding rates by the formation of $Mg_2Ni$. Expansion and contraction of the hydride-forming materials (Mg and $Mg_2Ni$) with the hydriding and dehydriding reactions are also considered to increase the hydriding and dehydriding rates of the mixture by forming defects and cracks leading to the fragmentation of particles. The reactive mechanical grinding of Mg-Ni alloy with $Fe_2O_3$ is considered to decrease the particle size.

In-situ Observation of Hydride Stability of Vanadium Alloys in Electron Microscope

  • Ohnuki, S.;Takase, K.;Yashiki, K.;Hamada, K.;Suda, T.;Watanabe, S.
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.57-61
    • /
    • 2006
  • High-resolution microscopy was applied for surveying hydride stability in Vanadium alloys, which are candidate for hydrogen storage materials of advanced hydrogen energy systems. $V_2H$ hydride in V alloys was stable at room temperature under the vacuum condition, but it was decomposed during heating up to $100^{\circ}C$. It was confirmed from HRTEM image and FFT that $V_2H$ has a BCT structure, where hydrogen atoms locate at octahedral sites. Crystal orientation was <110> beta// <110> mat., and lattice strain is about 10%. After the decomposition of the hydride, relatively large lattice expansion was observed in the matrix, which suggests that hydrogen atoms should be trapped by lattice defects and included in the matrix. Intensive electron beam also enhanced the decomposition.

Hydrogen Storage Property of MgH2 Synthesized by Hydriding Chemical Vapor Deposition (Hydriding Chemical Vapor Deposition 방법으로 제조된 MgH2의 수소저장 특성)

  • Park, Kyung-Duck;Han, Jeong-Seb;Kim, Jin-Ho;Kim, Byung-Kwan
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.380-385
    • /
    • 2011
  • $MgH_2$ was synthesized by hydriding chemical vapor deposition (HCVD). In this study, we examined the hydrogen storage property of $MgH_2$ synthesized by HCVD. The results of pressure-composition-temperature (PCT) measurement showed that the HCVDed $MgH_2$ reversibly absorbed hydrogen as much as 6 wt%. Each hydrogenation rate was very greater than the conventional alloy methods. The reason was that the particle size made by HCVD was small as approximately 1 ${\mu}m$. The PCT of $MgH_2$ made by HCVD methode was similar to a commercial $MgH_2$. The ${\Delta}H$ and ${\Delta}S$ value are respectively -76.8 $kJ/mol{\cdot}H_2$ and -137.4 $kJ/mol{\cdot}H_2$. Mg made by HCVD methode was activated easily than commercial Mg. Also the initial reaction rate was faster than that of commercial $MgH_2$. 70% of the total storage were stored during 400s.

Hydrogen Storage Properties of Mg Alloy Prepared by Incorporating Polyvinylidene Fluoride via Reactive Milling

  • Song, Myoung Youp;Kwak, Young Jun
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.878-884
    • /
    • 2018
  • In the present work, we selected a polymer, polyvinylidene fluoride (PVDF), as an additive to improve the hydrogenation and dehydrogenation properties of Mg. 95 wt% Mg + 5 wt% PVDF (designated Mg-5PVDF) samples were prepared via milling in hydrogen atmosphere (reactive milling), and the hydrogenation and dehydrogenation characteristics of the prepared samples were compared with those of Mg milled in hydrogen atmosphere. The dehydrogenation of magnesium hydride formed in the as-prepared Mg-5PVDF during reactive milling began at 681 K. In the fourth cycle (n=4), the initial hydrogenation rate was 0.75 wt% H/min and the quantity of hydrogen absorbed for 60 min, $H_a$ (60 min), was 3.57 wt% H at 573 K and in 12 bar $H_2$. It is believed that after reactive milling the PVDF became amorphous. The milling of Mg with the PVDF in hydrogen atmosphere is believed to have produced defects and cracks. The fabrication of defects is thought to ease nucleation. The fabrication of cracks is thought to expose fresh surfaces, resulting in an increase in the reactivity of the particles with hydrogen and a decrease in the diffusion distances of hydrogen atoms. As far as we know, this investigation is the first in which a polymer PVDF was added to Mg by reactive milling to improve the hydrogenation and dehydrogenation characteristics of Mg.