• Title/Summary/Keyword: hydrogen storage

Search Result 774, Processing Time 0.033 seconds

Self-Decomposition Characteristic of Concentrated Hydrogen Peroxide with Temperature and Stabilizer (저장 온도와 안정제 양에 따른 고농도 과산화수소의 자연 분해 특성)

  • Chung, Seung-Mi;An, Sung-Yong;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.16-21
    • /
    • 2009
  • This paper introduces the methods of hydrogen peroxide storage test and storability of concentrated hydrogen peroxide is estimated. Using the method of simple concentration measuring, storability was evaluated. Experiment variables were the amount of stabilizer in hydrogen peroxide, storage temperature, and caps of vessels. The experiments were performed during 8 months to 24 months. High purity hydrogen peroxide had much better storability than hydrogen peroxide with much stabilizer. In addition, the case using paraffin film which did not react with hydrogen peroxide for covering showed better storability. The temperature is very important variable in hydrogen peroxide storage. So, when hydrogen peroxide was under $10^{\circ}C$ storability of hydrogen peroxide is much improved.

Storage and Delivery of Hydrogen Isotopes (삼중수소 저장기술)

  • Chung, Hong-Suk;Chung, Dong-You;Koo, Dae-Seo;Lee, Ji-Sung;Shim, Myung-Hwa;Cho, Seung-Yon;Jung, Ki-Jung;Yun, Sei-Hun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.372-379
    • /
    • 2011
  • A nuclear fusion fuel cycle plant is composed of various subsystems such as a hydrogen isotope storage and delivery system, a tokamak exhaust processing system, and a hydrogen isotope separation system. Korea shares in the construction of its ITER fuel cycle plant with the EU, Japan, and the US, and is responsible for the development and supply of the storage and delivery system. The authors thus present details on the development status of hydrogen isotope storage technologies for nuclear fusion fuel cycle plants. We have developed various hydride beds of different size. We have realized a hydrogen delivery rate of 12.5 $Pam^3/s$ with a typical 1242g-ZrCo bed.

Hydrogen Storage Properties of Microporous Carbon Nitride Spheres (구형의 질화탄소 마이크로세공체의 수소저장 특성)

  • Kim, Se-Yun;Suh, Won-Hyuk;Choi, Jung-Hoon;Yi, Yoo-Soo;Lee, Sung-Keun;Stucky, Galen D.;Kang, Jeung-Ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.744-744
    • /
    • 2009
  • The development of safe and suitable hydrogen storage materials is one of key issues for commercializing hydrogen as an energy carrier. Carbon based materials have been investigated for many years to store hydrogen by the adsorption of the gas on the surface of the carbon structure. Recently, it is reported that carbon nitride nanobells have high hydrogen storage capacity since the nitrogen atom plays an important role on attracting hydrogen molecules. Here we report carbon nitride microporous spheres (CNMS) which have the maximum surface area of 995.3 $m^2/g$. Melamine-Formaldehyde resin is the source of carbon and nitrogen in CNMS. Most of the CNMS pores have diameters in the range of 6 to 8 A which could give a penetration energy barrier to a certain molecule. In addition, the maximum hydrogen storage capacities of carbon nitride spheres are 1.9 wt% under 77 K and 1 atm.

  • PDF

Evaluation of Structural Safety and Leak Test for Hydrogen Fuel Cell-Based Truck Storage Systems (수소트럭 수소저장시스템에 대한 구조안전성 및 기밀성능평가)

  • Kim, Da-Eun;Yeom, Ji-Woong;Choi, Sung-Joon;Kim, Young-Kyu;Cho, Sung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.1-7
    • /
    • 2020
  • Recently, hydrogen has gained considerable attention as an eco-friendly fuel, which helps in reducing carbon dioxide content. Specifically, there is a growing interest in vehicles powered by a hydrogen fuel cell, which is spotlighted as an environmental-friendly alternative. A hydrogen transport system, fuel cell system, fuel supply system, power management system, and hydrogen storage system are key parts of a hydrogen fuel cell truck. In this study, a hydrogen storage system is built and analyzed. The expansion length of the storage vessel at maximum operating pressure (87.5 MPa) was calculated with ABAQUS, and then the optimized system was designed and built. The leak and bubble tests were performed on the built storage system. The leakage of the system was measured to be under 5 cc/hr. Hence, it can be used as a research test for the safety evaluation of leading systems of hydrogen fuel-powered commercial vehicles.

A Study on the Thermal Characteristics of High Pressure Hydrogen Storage Tank according to Nozzle Angle and Length/Diameter Ratio (고압수소 저장용기의 노즐 각도 및 길이/직경비에 따른 열적 특성 연구)

  • JEONG HWAN YOON;JUNYEONG KWON;KYUNG SOOK JEON;JIN SIK OH;SEUNG JUN OH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.431-438
    • /
    • 2023
  • Recently, study on hydrogen is being conducted due to environmental pollution and fossil fuel depletion. High-pressure gas hydrogen commonly used is applied to vehicle and tube trailers. In particular, high-pressure hydrogen storage tank for vehicles must comply with the guidelines stipulated in SAE J2601. There is a charging temperature limitation condition for the safety of the storage tank material. In this study, numerical analysis method were verified based on previous studies and the nozzle angle was changed for thermal management to analyze the increase in forced convection effect and energy uniformity due to the promotion of circulation flow. The previously applied high-pressure hydrogen storage tank has a length/diameter ratio of about 2.4 and was analyzed by comparing the length/diameter ratio with 8. As a result, the circulation flow of hydrogen flowing into the high-pressure hydrogen storage tank is promoted at a nozzle angle of 30° than the straight nozzle and accordingly, the effect of suppressing temperature rise by energy uniformity and forced convection was confirmed.

Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility (저심도 지중 수소저장시설에서의 수소가스 누출에 따른 불포화 지반의 수리-역학적 거동 예측 연구)

  • Go, Gyu-Hyun;Jeon, Jun-Seo;Kim, YoungSeok;Kim, Hee Won;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.107-118
    • /
    • 2022
  • The social need for stable hydrogen storage technologies that respond to the increasing demand for hydrogen energy is increasing. Among them, underground hydrogen storage is recognized as the most economical and reasonable storage method because of its vast hydrogen storage capacity. In Korea, low-depth hydrogen storage using artificial protective structures is being considered. Further, establishing corresponding safety standards and ground stability evaluation is becoming essential. This study evaluated the hydro-mechanical behavior of the ground during a hydrogen gas leak from a low-depth underground hydrogen storage facility through the HM coupled analysis model. The predictive reliability of the simulation model was verified through benchmark experiments. A parameter study was performed using a metamodel to analyze the sensitivity of factors affecting the surface uplift caused by the upward infiltration of high-pressure hydrogen gas. Accordingly, it was confirmed that the elastic modulus of the ground was the largest. The simulation results are considered to be valuable primary data for evaluating the complex analysis of hydrogen gas explosions as well as hydrogen gas leaks in the future.

Hydrogen Storage Behaviors of Carbon Nanotubes/Metal-organic Frameworks-5 Hybrid Composites

  • Park, Soo-Jin;Lee, Seul-Yi
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.19-22
    • /
    • 2009
  • In this work, the hydrogen storage behaviors of carbon nanotubes (CNTs)/metal-organic frameworks-5 (MOF-5) hybrid composites (CNTs/MOF-5) were studied. Hydrothermal synthesis of MOF-5 was conducted by conventional convection heating using 1-methyl-2-pyrrolidone (NMP) as a solvent. Morphological characteristics and average size of the CNTs/MOF-5 were also obtained using a scanning electron microscopy (SEM). The pore structure and specific surface area of the CNTs/MOF-5 were analyzed by N2/77 K adsorption isotherms. The capacity of hydrogen storage of the CNTs/MOF-5 was investigated at 298 K/100 bar. As a result, the CNTs/MOF-5 had crystalline structures which were formed by hybrid synthesis process. It was noted that the CNTs/MOF-5 can be potentially encouraging materials for hydrogen adsorption and storage applications at room temperature.

Preparation and Characterization of Ultramicroporous Carbons for Hydrogen Storage (초미세기공을 지니는 탄소분자체의 수소저장거동)

  • Lee, Seul-Yi;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.158.1-158.1
    • /
    • 2011
  • In this work, we prepared ultramicroporous carbons (UC) prepared by pyrolyzing poly(vinylidene fluoride) with different carbonization temperatures, and investigated the hydrogen storage behaviors. The surface functional groups and specific elements of UC were confirmed by Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), respectively. Textural properties were analyzed using $N_2$ adsorption isotherms at 77 K. The hydrogen storage capacity of the UC samples were investigated by BEL-HP at 298 K/10 MPa. From the results, it was found that the hydrogen storage capacity was enhanced with increasing of specific surface area, resulting from the formation of ultramicropore on the UC.

  • PDF

Improvement of Fe, Mn or Si Substitution on Hydrogen Storage Properties of Ti-Cr-V Alloys (Fe, Mn, Si 치환에 의한 Ti-Cr-V 합금의 수소저장 특성 향상)

  • Yoo, Jeong-Hyun;Cho, Sung-Wook;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.250-255
    • /
    • 2007
  • Hydrogen storage properties of $Ti_{0.32}Cr_{0.43-X}V_{0.25}M_X$($0{\leq}X{\leq}0.1$, M=Fe, Mn, Si) have been investigated. With varing of Mn content, the lattice parameter of the alloy was unchanged and similar to that of $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy. With increase of Fe, Si content, the lattice parameters of the BCC phases decreased. When the Fe content was 8 at%, the desorption plateau pressure increased to several atmospheres without decrease of the effective hydrogen storage capacity of the alloy. When the Mn content was 8 at%, the effective hydrogen storage capacity showed approximately 2.5 wt% without change in the desorption plateau pressure. With increase of Si content, hysteresis increased and hydrogen storage capacity decreased rapidly. A study was also made on how desorption temperature affected the usable hydrogen of the $Ti_{0.32}Cr_{0.35}V_{0.25}Mn_{0.08}$ alloy. The temperature was varied from 293 to 413 K, and the pressure from 5 to 0.002 MPa. The usable hydrogen of the alloy was 2.7 wt% when absorbed and desorbed at 293 K and 373 K., respectively. The heat of hydride formation of the alloy was approximately -35.5 kJ/mol $H_2$.

Characteristics of Hydrogen Storage in Ti-Cr-Mo and Ti-Cr-V bcc Alloys (Ti-Cr-Mo계 및 Ti-Cr-V계 bcc 합금의 수소저장특성에 관한 연구)

  • You, J.H.;Cho, S.W.;Park, C.N.;Choi, J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.122-129
    • /
    • 2005
  • The characteristics of hydrogen storage have been investigated in the Ti-Cr-Mo and Ti-Cr-V ternary alloys with bcc structure. The alloys were melted by arc furnace and remelted 4-5 times for homogeneity. The lattice parameters, microstructures and phases of the alloys were examined by SEM, EDX and XRD, and the Pressure-Composition isotherms of the alloys were measured. From these data the relationship of the maximum and effective hydrogen storage capacities vs. chemical composition, lattice parameter and the radius of tetrahedral site were analyzed and discussed. The results showed that all of these alloy, in the range of the this study, had mainly bcc solid solutions with small amount of Ti segregation due to a lower melting point of Ti compared with other elements. Lattice parameters of the alloys were very near to the atomic average values of lattice parameters of the constituent elements. It was also found that maximum hydrogen storage capacities of the Ti-Cr-Mo alloys increased with increasing Ti content and the radius of tetrahedral site but the effective hydrogen storage capacities decreased after showing the maximum. The hydrogen storage capacities of the Ti-Cr-V alloys were almost same even though the V contens were quite different from alloy to alloy and this could be attributed to the almost same Ti/Cr ratio of the alloys. The maximum effective hydrogen storage capacity of the Ti-Cr-Mo alloys was revealed at Ti content of about 40${\sim}$50 at% and radius of tetrahedral site of 0.43${\sim}$0.45 nm. The Ti-Cr-V alloys showed the hydrogen storage capacities of 3.0 wt% and effective hydrogen storage capacities of 1.5 wt%.