• 제목/요약/키워드: hydrogen storage

검색결과 786건 처리시간 0.021초

수소 안전밸브용 역화방지기의 성능 평가에 대한 수치해석 연구 (A Numerical Study on the Flame Arrestor for Safety Valve of Hydrogen)

  • 오승준;윤정환;김시범;최정주
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.391-399
    • /
    • 2022
  • Hydrogen is one of the energy carriers and has high energy efficiency relative to mass. It is an eco-friendly fuel that makes only water (H2O) as a by-product after use. In order to use hydrogen conveniently and safely, development of production, storage and transfer technologies is required and attempts are being made to apply hydrogen as an energy source in various fields through the development of the technology. For transporting and storing hydrogen include high-pressure hydrogen gas storage, a type of storage technologies consist of cryogenic hydrogen liquid storage, hydrogen storage alloy, chemical storage by adsorbents and high-pressure hydrogen storage containers have been developed in a total of four stages. The biggest issue in charging high-pressure hydrogen gas which is a combustible gas is safety and the backfire prevention device is that prevents external flames from entering the tank and prevents explosion and is essential to use hydrogen safely. This study conducted a numerical analysis to analyze the performance of suppressing flame propagation of 2, 3 inch flame arrestor. As a result, it is determined that, where the flame arrestor is attached, the temperature would be lowered below the temperature of spontaneous combustion of hydrogen to suppress flame propagation.

수소저장용 활성탄소섬유의 표면개질 특성 (Surface modification characteristics of activated carbon fibers for hydrogen storage)

  • 김신동;김주완;임지선;조세호;이영석
    • 한국수소및신에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.47-54
    • /
    • 2006
  • Activated carbon fibers (ACFs) with high surface area and pore volume were modified with metal Ni impregnation and fluorination and investigated hydrogen storage properties by volumetric method. Micropore volume values of ACFs obtained from surface modification with Ni impregnation and fluorination were decreased 9 and 35 %, respectively. Hydrogen storage capacities of fluorinated ACFs were slightly changed, on the other hand, that of Ni impregnated ACF was considerably increased. It means that hydrogen was not only adsorbed on ACF surface, but also on Ni metal surface by means of dissociation. Although the microphone volume of ACF modified with fluorination was decreased, its hydrogen storage were found not to be changed compared with fresh ACF. These results indicated that the surface of ACF after fluorination modification may be strongly attracted hydrogen due to high electronegativity of fluorine. Therefore, it was proven that hydrogen storage capacity was related with micropore volume and surface property of carbon materials as well as specific surface area.

리튬계 수소저장재료의 연구개발 동향 (Trend in Research and Development of Lithium Complex Hydrides for Hydrogen Storage)

  • 심재동;심재혁;하헌필
    • 한국재료학회지
    • /
    • 제22권3호
    • /
    • pp.159-167
    • /
    • 2012
  • Hydrogen is in the spotlight as an alternative next generation energy source for the replacement of fossil fuels because it has high specific energy density and emits almost no pollution, with zero $CO_2$ emission. In order to use hydrogen safely, reliable storage and transportation methods are required. Recently, solid hydrogen storage systems using metal hydrides have been under extensive development for application to fuel cell vehicles and fuel cells of MCFC and SOFC. For the practical use of hydrogen on a commercial basis, hydrogen storage materials should satisfy several requirements such as 1) hydrogen storage capacity of more than 6.5wt.% $H_2$, moderate hydrogen release temperature below $100^{\circ}C$, 3) cyclic reversibility of hydrogen absorption/desorption, 4) non toxicity and low price. Among the candidate materials, Li based metal hydrides are known to be promising materials with high practical potential in view of the above requirements. This paper reviews the characteristics and recent R&D trends of Li based complex hydrides, Li-alanates, Li-borohydrides, and Li-amides/imides.

금속수소화물 수소 저장 용기 내부의 수소흡장에 대한 수치해석적 연구 (Numerical Study of Hydrogen Absorption in a Metal Hydride Hydrogen Storage Vessel)

  • 남진무;강경문;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제21권4호
    • /
    • pp.249-257
    • /
    • 2010
  • In this paper, a three-dimensional hydrogen absorption model is developed to precisely study hydrogen absorption reaction and resultant heat and mass transport phenomena in metal hydride hydrogen storage vessels. The 3D model is first experimentally validated against the temperature evolution data available in the literature. In addition to model validation, the detailed simulation results shows that at the initial absorption stage, the vessel temperature and H/M ratio distributions are uniform throughout the entire vessel, indicating that the hydrogen absorption is so efficient during the early hydriding process and thus local cooling effect is not influential. On the other hand, nonuniform distributions are predicted at the latter absorption stage, which is mainly due to different degrees of cooling between the vessel wall and core regions. This numerical study provides the fundamental understanding of detailed heat and mass transfer phenomena during hydrogen absorption process and further indicates that efficient design of storage vessel and cooling system is critical to achieve fast hydrogen charging and high hydrogen storage efficiency.

수소버스 수소저장용기의 측면충돌 안전성 평가방법 연구 (Study on Safety Evaluation Process for Hydrogen Storage System of Hydrogen Bus)

  • 김경진;신재호;한경희;한현민;인정민;김시우
    • 자동차안전학회지
    • /
    • 제14권4호
    • /
    • pp.113-119
    • /
    • 2022
  • The structural safety of hydrogen buses is being evaluated for the successful introduction of hydrogen buses. The crash test methodology, for example, side impact test procedure is being discussed for hydrogen bus structure safety with a compressed hydrogen storage system located under the bus floor. Thus this study describes a new experiment method for side impact test with compressed hydrogen storage system independently based on finite element analysis instead of side impact test using full hydrogen bus. A side crash procedure of conceptual compressed hydrogen storage structure was investigated and impact simulations were performed. The finite element models of hydrogen bus, simplified structures, fuel tank system and side impact moving barrier were set up and simulation results reported model performance and result comparison of three different simplified models. Computational results and research discussion proposed the fundamental test framework for safety assessment of the compressed hydrogen storage system.

Analysis of Characteristics of Spent Fuels on Long-Term Dry Storage Condition

  • Yoon, Suji;Park, Kwangheon;Yun, Hyungju
    • 방사성폐기물학회지
    • /
    • 제19권2호
    • /
    • pp.205-214
    • /
    • 2021
  • Currently, the interim storage pools of spent fuels in South Korea are expected to become saturated from 2024. It is required to prepare an operation plan of a domestic dry storage facility during a long-term period, with the researches on safety evaluation methods. This study modified the FRAPCON code to predict the spent fuel integrity evaluation such as the axial cladding temperature, the hoop stress and hydrogen distribution in dry storage. The cladding temperature in dry storage was calculated using the COBRA-SFS code with the burnup information which was calculated using the FRAPCON code. The hoop stress was calculated using the ideal gas equation with spent fuel information such as rod internal pressure. Numerical analysis method was used to calculate the degree of hydrogen diffusion according to the hydrogen concentration and temperature distribution during a dry storage period. Before 50 years of dry storage, the cladding temperature and hoop stress decreased rapidly. However, after 50 years, they decreased gradually and the cladding temperature was below 400 K. The initial temperature distribution and hydrogen concentration showed a parabolic line, but hydrogen was transferred by the hydrogen concentration and temperature gradient over time.

다공성 탄소계 재료를 이용한 수소저장 기술 (Hydrogen Storage Technology by Using Porous Carbon Materials)

  • 이영석;임지선
    • 공업화학
    • /
    • 제20권5호
    • /
    • pp.465-472
    • /
    • 2009
  • 본 총설에서는 최근 주로 연구되고 있는 활성탄, 탄소나노튜브, 팽창 흑연 및 활성 탄소 섬유 등 다공성 탄소재료를 중심으로 수소 저장량을 증대시키기 위한 기술 및 기 발표된 수소저장량과 그 장 단점에 대하여 고찰하였다. 수소저장능을 향상시키기 위한 탄소 내 기공의 최적의 크기는 0.6~0.7 nm로 조사되었다. 촉매의 경우 전이금속 및 그 금속산화물이 많이 이용되었으며, 주로 다공성 탄소재료에 도핑을 통해 수소저장능을 향상시켰다. 수소저장 매체인 다공성 탄소재료 중에서 활성탄은 대량생산이 가능하여 가격이 비교적 저렴한 장점이 있고 탄소나노튜브는 튜브의 튜브간 공간 외에도 내부공간에 수소를 저장할 수 있는 공간이 수소저장에 활용될 수 있다는 장점이 있다. 팽창 흑연은 흑연의 층 사이에 알칼리 금속의 삽입 시 층간 거리가 팽창하여 수소저장에 용이하고, 활성탄소섬유는 높은 비표면적과 발달된 미세기공이 수소흡착에 크게 기여한다는 점이 있다. 이러한 기존의 연구로 고려해 볼 때 다공성 탄소재료는 아직 달성되지 못한 DOE의 수소저장 목표치에 도달하기 위한 주요 유망한 후보재료 중의 하나이다.

수소저장용 단일벽 탄소나노튜브의 표면처리 효과 (Effect of surface treatments on Single-walled Carbon nanotubes(SWNTs) for Hydrogen storage)

  • 이영석;조세호;박일남
    • 한국수소및신에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.343-349
    • /
    • 2005
  • In this study, We had surface-treated single-walled carbon nanotubes (SWNTs) for improving hydrogen storage capacity. The SWNTs were treated by heat treatment, acid treatment and fluorinated at various temperatures. The SWNTs were characterized by Raman spectroscopy and TEM and estimated hydrogen storage capacities at 303K. As shown Raman spectra and TEM images, the structure of fluorinated SWNTs were stable at 423K but changed to the MWNTs-like structure or onion structure over 523K. Hydrogen storage capacity of SWNTs fluorinated at 423K was remarkably increased 2.6 times than that of pristine SWNTs. For SWNTs fluorinated at 573K, the amount of hydrogen adsorbed wasn't increased compared with SWNTs fluorinated at 423K. Therefore, high hydrogen storage capacity of SWNTs could be archived by fluorinated condition at 423K, which was not changed SWNT structure.

열전달 특성이 향상된 마그네슘 수소화물을 이용한 수소저장시스템의 전산모사 (Numerical Simulation of Hydrogen Storage System using Magnesium Hydride Enhanced in its Heat Transfer)

  • 김상곤;심재혁;임연호
    • 한국수소및신에너지학회논문집
    • /
    • 제26권5호
    • /
    • pp.469-476
    • /
    • 2015
  • The purpose of this work is to investigate main factors to design a solid-state hydrogen stroage system with magnesium hydride with 10 wt% graphite using numerical simulation tools. The heat transfer characteristic of this material was measured in order to perform the highly reliable simulation for this system. Based on the measured effective thermal conductivity, a transient heat and mass transfer simulation revealed that the total performance of hydrogen storage system is prone to depend on heat and mass transfer behaviors of hydrogen storage medium instead of its inherent kinetic rate for hydrogen adsorption. Furthermore, we demonstrate that the thermodynamic aspect between equlibrium presssure and temperature is one of key factor to design the hydrogen storage system with high performance using magnesium hydride.

금속수소화물-팽창흑연 복합체의 열전달 특성 및 수소 저장 특성 (Heat Transfer Characteristics and Hydrogen Storage Kinetics of Metal Hydride-Expended Graphite Composite)

  • 이평종;김종원;배기광;정성욱;강경수;정광진;박주식;김영호
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.564-570
    • /
    • 2020
  • Metal hydride is suitable for safe storage of hydrogen. The hydrogen storage kinetics of the metal hydride are highly dependent on its heat transfer characteristics. This study presents a metal hydride-expended graphite composite with improved thermal conductivity and its hydrogen storage kinetics. To improve the heat transfer characteristics, a metal hydride was mixed and compacted with a high thermal conductivity additive. As the hydrogen storage material, AB5 type metal hydride La0.9Ce0.1Ni5 was used. As an additive, flakes-type expended graphite was used. With improved heat transfer characteristics, the metal hydride-expended graphite composite stores hydrogen four times faster than metal hydride powder.