Browse > Article
http://dx.doi.org/10.7316/KHNES.2020.31.6.564

Heat Transfer Characteristics and Hydrogen Storage Kinetics of Metal Hydride-Expended Graphite Composite  

LEE, PYOUNGJONG (Korea Institute of Energy Research)
KIM, JONGWON (Korea Institute of Energy Research)
BAE, KIKWANG (Korea Institute of Energy Research)
JEONG, SEONGUK (Korea Institute of Energy Research)
KANG, KYOUNGSOO (Korea Institute of Energy Research)
JUNG, KWANGJIN (Korea Institute of Energy Research)
PARK, CHUSIK (Korea Institute of Energy Research)
KIM, YOUNGHO (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.31, no.6, 2020 , pp. 564-570 More about this Journal
Abstract
Metal hydride is suitable for safe storage of hydrogen. The hydrogen storage kinetics of the metal hydride are highly dependent on its heat transfer characteristics. This study presents a metal hydride-expended graphite composite with improved thermal conductivity and its hydrogen storage kinetics. To improve the heat transfer characteristics, a metal hydride was mixed and compacted with a high thermal conductivity additive. As the hydrogen storage material, AB5 type metal hydride La0.9Ce0.1Ni5 was used. As an additive, flakes-type expended graphite was used. With improved heat transfer characteristics, the metal hydride-expended graphite composite stores hydrogen four times faster than metal hydride powder.
Keywords
Metal hydride; Expended graphite; Thermal conductivity; Thermal diffusivity; Hydrogen storage;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, "Metal hydride materials for solid hydrogen storage: a review", Int. J. Hydrogen Energy, Vol. 32, No. 9, 2007, pp. 1121-1140, doi: https://doi.org/10.1016/j.ijhydene.2006.11.022.   DOI
2 O. Bernauer, "Metal hydride technology", Int. J. Hydrogen Energy, Vol. 13, No. 3, 1988, pp. 181-190, doi: https://doi.org/10.1016/0360-3199(88)90017-1.   DOI
3 C. S. Park, K. J. Jung, S. U. Jeong, K. S. Kang, Y. H. Lee, Y. S. Park, and B. H. Park, "Development of hydrogen storage reactor using composite of metal hydride materials with ENG", Int. J. Hydrogen Energy, Vol. 45, No. 51, 2020, pp. 27434-27442, doi: https://doi.org/10.1016/j.ijhydene.2020.07.062.   DOI
4 B. D. MacDonald and A. M. Rowe, "Impacts of external heat transfer enhancements on metal hydride storage tanks", Int. J. Hydrogen Energy, Vol. 31, No. 12, 2006, pp. 1721-1731, doi: https://doi.org/10.1016/j.ijhydene.2006.01.007.   DOI
5 P. Muthukumar, M. P. Maiya, and S. S. Murthy, "Experiments on a metal hydride-based hydrogen storage device", Int. J. Hydrogen Energy, Vol. 30, No. 15, 2005, pp. 1569-1581, doi: https://doi.org/10.1016/j.ijhydene.2004.12.007.   DOI
6 M. Dieterich, C. Pohlmann, I. Burger, M. Linder, and L. Rontzsch, "Long-term cycle stability of metal hydride-graphite composites", Int. J. Hydrogen Energy, Vol. 40, No. 46, 2015, pp. 16375-16382, doi: https://doi.org/10.1016/j.ijhydene.2015.09.013.   DOI
7 T. Oi, K. Maki, and Y. Sakaki, "Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger", J. Power Sources, Vol. 125, No. 1, 2004, pp. 52-61, doi: https://doi.org/10.1016/S0378-7753(03)00822-X.   DOI
8 G. Mohan, M. P. Maiya, and S. S. Murthy, "Performance simulation of metal hydride hydrogen storage device with embedded filters and heat exchanger tubes", Int. J. Hydrogen Energy, Vol. 32, No. 18, 2007, pp. 4978-4987, doi: https://doi.org/10.1016/j.ijhydene.2007.08.007.   DOI
9 A. Boukhari and R. Bessaih, "Numerical heat and mass transfer investigation of hydrogen absorption in an annulus-disc reactor", Int. J. Hydrogen Energy, Vol. 40, No. 39, 2015, pp. 13708-13717, doi: https://doi.org/10.1016/j.ijhydene.2015.05.123.   DOI
10 C. Pohlmann, L. Rontzsch, T. Weissgarber, and B. Kieback, "Heat and gas transport properties in pelletized hydride-graphite-composites for hydrogen storage applications", Int. J. Hydrogen Energy, Vol. 38, No. 3, 2013, pp. 1685-1691, doi: https://doi.org/10.1016/j.ijhydene.2012.09.159.   DOI
11 C. S. Park, J. W. Kim, K. K. Bae, S. U. Jeong, and K. S. Kang, "Investigation of thermal management parameters of metal hydride based hydrogen storage system", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 3, 2017, pp. 251-259, doi: https://doi.org/10.7316/KHNES.2018.29.3.251.   DOI
12 K. Herbrig, L. Rontzsch, C. Pohlmann, T. Weissgarber, and B. Kieback, "Hydrogen storage systems based on hydride-graphite composites: computer simulation and experimental validation", Int. J. Hydrogen Energy, Vol. 38, No. 17, 2013, pp. 7026-7036, doi: https://doi.org/10.1016/j.ijhydene.2013.03.104.   DOI
13 H. Imamura, S. Tabata, N. Shigetomi, Y. Takesue, and Y. Sakata, "Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium", Int. J. Hydrogen Energy, Vol. 330-332, 2002, pp. 579-583, doi: https://doi.org/10.1016/S0925-8388(01)01506-7.   DOI
14 J. S. Kim, W. B. Han, H. S. Cho, M. S. Jeong, S. U. Jeong, W. C. Cho, K. S. Kang, C. H. Kim, K. K. Bae, J. W. Kim, and C. S. Park, "Hydrogen storage and release properties for compacted Ti-Mn alloy", Trans Korean Hydrogen New Energy Soc, Vol. 28, No. 1, 2017, pp. 9-16, doi: https://doi.org/10.7316/KHNES.2017.28.1.9.   DOI
15 X. Lin, Q. Zhu, H. Leng, H. Yang, T. Lyu, and Q. Li, "Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank", Applied Energy, Vol. 250, 2019, pp. 1065-1072, doi: https://doi.org/10.1016/j.apenergy.2019.04.181.   DOI
16 A. N. Kazakov, I. A. Romanov, V. N. Kuleshov, and D. O. Dunikov, "Experimental investigations of adsorption characteristics and porosity of activated metal hydride powders", Journal of Physics : Conference Series, Vol. 891, 2017, 012115, doi: https://doi.org/10.1088/1742-6596/891/1/012115.   DOI
17 S. Y. Noh, Y. W. Rhee, K. S. Kang, S. J. Choi, and J. W. Kim, "Technology characteristics of hydrogen storage and its technology trend by the patent analysis", Trans Korean Hydrogen New Energy Soc, Vol. 19, No. 1, 2008, pp. 90-102. Retrieved from https://www.koreascience.or.kr/article/JAKO200818259610128.page.