DOI QR코드

DOI QR Code

Heat Transfer Characteristics and Hydrogen Storage Kinetics of Metal Hydride-Expended Graphite Composite

금속수소화물-팽창흑연 복합체의 열전달 특성 및 수소 저장 특성

  • 이평종 (한국에너지기술연구원) ;
  • 김종원 (한국에너지기술연구원) ;
  • 배기광 (한국에너지기술연구원) ;
  • 정성욱 (한국에너지기술연구원) ;
  • 강경수 (한국에너지기술연구원) ;
  • 정광진 (한국에너지기술연구원) ;
  • 박주식 (한국에너지기술연구원) ;
  • 김영호 (충남대학교 응용화학공학과)
  • Received : 2020.10.23
  • Accepted : 2020.12.30
  • Published : 2020.12.30

Abstract

Metal hydride is suitable for safe storage of hydrogen. The hydrogen storage kinetics of the metal hydride are highly dependent on its heat transfer characteristics. This study presents a metal hydride-expended graphite composite with improved thermal conductivity and its hydrogen storage kinetics. To improve the heat transfer characteristics, a metal hydride was mixed and compacted with a high thermal conductivity additive. As the hydrogen storage material, AB5 type metal hydride La0.9Ce0.1Ni5 was used. As an additive, flakes-type expended graphite was used. With improved heat transfer characteristics, the metal hydride-expended graphite composite stores hydrogen four times faster than metal hydride powder.

Keywords

References

  1. B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, "Metal hydride materials for solid hydrogen storage: a review", Int. J. Hydrogen Energy, Vol. 32, No. 9, 2007, pp. 1121-1140, doi: https://doi.org/10.1016/j.ijhydene.2006.11.022.
  2. O. Bernauer, "Metal hydride technology", Int. J. Hydrogen Energy, Vol. 13, No. 3, 1988, pp. 181-190, doi: https://doi.org/10.1016/0360-3199(88)90017-1.
  3. C. S. Park, K. J. Jung, S. U. Jeong, K. S. Kang, Y. H. Lee, Y. S. Park, and B. H. Park, "Development of hydrogen storage reactor using composite of metal hydride materials with ENG", Int. J. Hydrogen Energy, Vol. 45, No. 51, 2020, pp. 27434-27442, doi: https://doi.org/10.1016/j.ijhydene.2020.07.062.
  4. B. D. MacDonald and A. M. Rowe, "Impacts of external heat transfer enhancements on metal hydride storage tanks", Int. J. Hydrogen Energy, Vol. 31, No. 12, 2006, pp. 1721-1731, doi: https://doi.org/10.1016/j.ijhydene.2006.01.007.
  5. P. Muthukumar, M. P. Maiya, and S. S. Murthy, "Experiments on a metal hydride-based hydrogen storage device", Int. J. Hydrogen Energy, Vol. 30, No. 15, 2005, pp. 1569-1581, doi: https://doi.org/10.1016/j.ijhydene.2004.12.007.
  6. T. Oi, K. Maki, and Y. Sakaki, "Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger", J. Power Sources, Vol. 125, No. 1, 2004, pp. 52-61, doi: https://doi.org/10.1016/S0378-7753(03)00822-X.
  7. G. Mohan, M. P. Maiya, and S. S. Murthy, "Performance simulation of metal hydride hydrogen storage device with embedded filters and heat exchanger tubes", Int. J. Hydrogen Energy, Vol. 32, No. 18, 2007, pp. 4978-4987, doi: https://doi.org/10.1016/j.ijhydene.2007.08.007.
  8. A. Boukhari and R. Bessaih, "Numerical heat and mass transfer investigation of hydrogen absorption in an annulus-disc reactor", Int. J. Hydrogen Energy, Vol. 40, No. 39, 2015, pp. 13708-13717, doi: https://doi.org/10.1016/j.ijhydene.2015.05.123.
  9. M. Dieterich, C. Pohlmann, I. Burger, M. Linder, and L. Rontzsch, "Long-term cycle stability of metal hydride-graphite composites", Int. J. Hydrogen Energy, Vol. 40, No. 46, 2015, pp. 16375-16382, doi: https://doi.org/10.1016/j.ijhydene.2015.09.013.
  10. C. Pohlmann, L. Rontzsch, T. Weissgarber, and B. Kieback, "Heat and gas transport properties in pelletized hydride-graphite-composites for hydrogen storage applications", Int. J. Hydrogen Energy, Vol. 38, No. 3, 2013, pp. 1685-1691, doi: https://doi.org/10.1016/j.ijhydene.2012.09.159.
  11. K. Herbrig, L. Rontzsch, C. Pohlmann, T. Weissgarber, and B. Kieback, "Hydrogen storage systems based on hydride-graphite composites: computer simulation and experimental validation", Int. J. Hydrogen Energy, Vol. 38, No. 17, 2013, pp. 7026-7036, doi: https://doi.org/10.1016/j.ijhydene.2013.03.104.
  12. H. Imamura, S. Tabata, N. Shigetomi, Y. Takesue, and Y. Sakata, "Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium", Int. J. Hydrogen Energy, Vol. 330-332, 2002, pp. 579-583, doi: https://doi.org/10.1016/S0925-8388(01)01506-7.
  13. S. Y. Noh, Y. W. Rhee, K. S. Kang, S. J. Choi, and J. W. Kim, "Technology characteristics of hydrogen storage and its technology trend by the patent analysis", Trans Korean Hydrogen New Energy Soc, Vol. 19, No. 1, 2008, pp. 90-102. Retrieved from https://www.koreascience.or.kr/article/JAKO200818259610128.page.
  14. J. S. Kim, W. B. Han, H. S. Cho, M. S. Jeong, S. U. Jeong, W. C. Cho, K. S. Kang, C. H. Kim, K. K. Bae, J. W. Kim, and C. S. Park, "Hydrogen storage and release properties for compacted Ti-Mn alloy", Trans Korean Hydrogen New Energy Soc, Vol. 28, No. 1, 2017, pp. 9-16, doi: https://doi.org/10.7316/KHNES.2017.28.1.9.
  15. X. Lin, Q. Zhu, H. Leng, H. Yang, T. Lyu, and Q. Li, "Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank", Applied Energy, Vol. 250, 2019, pp. 1065-1072, doi: https://doi.org/10.1016/j.apenergy.2019.04.181.
  16. A. N. Kazakov, I. A. Romanov, V. N. Kuleshov, and D. O. Dunikov, "Experimental investigations of adsorption characteristics and porosity of activated metal hydride powders", Journal of Physics : Conference Series, Vol. 891, 2017, 012115, doi: https://doi.org/10.1088/1742-6596/891/1/012115.
  17. C. S. Park, J. W. Kim, K. K. Bae, S. U. Jeong, and K. S. Kang, "Investigation of thermal management parameters of metal hydride based hydrogen storage system", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 3, 2017, pp. 251-259, doi: https://doi.org/10.7316/KHNES.2018.29.3.251.