Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.3.159

Trend in Research and Development of Lithium Complex Hydrides for Hydrogen Storage  

Shim, Jae-Dong (Korea Institute of Science and Technology Information)
Shim, Jae-Hyeok (Korea Institute of Science and Technology)
Ha, Heon-Phil (Korea Institute of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.22, no.3, 2012 , pp. 159-167 More about this Journal
Abstract
Hydrogen is in the spotlight as an alternative next generation energy source for the replacement of fossil fuels because it has high specific energy density and emits almost no pollution, with zero $CO_2$ emission. In order to use hydrogen safely, reliable storage and transportation methods are required. Recently, solid hydrogen storage systems using metal hydrides have been under extensive development for application to fuel cell vehicles and fuel cells of MCFC and SOFC. For the practical use of hydrogen on a commercial basis, hydrogen storage materials should satisfy several requirements such as 1) hydrogen storage capacity of more than 6.5wt.% $H_2$, moderate hydrogen release temperature below $100^{\circ}C$, 3) cyclic reversibility of hydrogen absorption/desorption, 4) non toxicity and low price. Among the candidate materials, Li based metal hydrides are known to be promising materials with high practical potential in view of the above requirements. This paper reviews the characteristics and recent R&D trends of Li based complex hydrides, Li-alanates, Li-borohydrides, and Li-amides/imides.
Keywords
hydrogen storage material; lithium complex hydride; lithium alanate; lithium borohydride; lithium amide/imide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li-Mg-N-H system materials for hydogen storage (In Japanese) on the web. Retrieved Feb. 1, 2012 from http://www.chugoku.meti.go.jp/junkan/sozairyoku/1006.pdf
2 Y. Zhang, W. S. Zhang, A. Q. Wang, L. X. Sun, M. Q. Fan, H. L. Chu, J. C. Sun and T. Zhang, Int. J. Hydrogen Energ., 32, 3976 (2007).   DOI   ScienceOn
3 J. H. Lim, J. H. Shim, Y. S. Lee, Y. W. Cho and J. Lee, Scripta Mater., 59, 1251 (2008).   DOI   ScienceOn
4 S. A. Jin, Y. S. Lee, J. H. Shim and Y. W. Cho, J. Phys. Chem. C, 112, 9520 (2008).
5 J. H. Shim, J. H. Lim, S. Rather, Y. S. Lee, D. Reed, Y. Kim, D. Book and Y. W. Cho, J. Phys. Chem. Letters, 1, 59 (2010).   DOI   ScienceOn
6 Study on Lithium system hydrogen storage materials for fuel cell vehicle (in Japanese) on the web. Retrieved Feb. 1, 2012 from http://www.nedo.go.jp/content/100091322.pdf
7 P. Chen, Z. Xiong, J. Luo, J. Lin and K. L. Tan, Nature, 420, 302 (2002).   DOI   ScienceOn
8 P. Chen, Z. Xiong, J. Luo, J. Lin and K. L. Tan, J. Phys. Chem. B, 107, 10967 (2003).
9 Y. H. Hu and E. Ruckenstein, J. Phys. Chem. A, 107, 9737 (2003).   DOI   ScienceOn
10 L. L. Shaw, W. Osborn, T. Markmaitree and X. Wan, J. Power Sourc., 177, 500 (2008).   DOI   ScienceOn
11 T. Ichikawa, S. Isobe, N. Hanada and H. Fujii, J. Alloy. Comp., 365, 271 (2004).   DOI   ScienceOn
12 Development of hydrogen storage function (in Japanese) on the web. Retrieved Feb. 1, 2012 from http://www.hiroshimau.ac.jp/gakujutsu/kenkyu/hydrogen
13 Japanese patent 2005-186058 (in Japanese).
14 Japanese patent 2010-265149 (in Japanese).
15 S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, T. Noritake and S. Towata, Appl. Phys. Mater. Sci. Process., 79, 1765 (2004).
16 S. Orimo, Y. Nakamori and A. Zuttel, Mater. Sci. Eng. B, 108, 51 (2004).   DOI   ScienceOn
17 T. Ichikawa, K. Tokoyoda, H. Leng and H. Fujii, J. Alloy. Comp., 400, 245 (2005).   DOI   ScienceOn
18 B. Bogdanovic and M. Schwickardi, J. Alloy. Comp., 253-254, 1 (1997).   DOI   ScienceOn
19 V. P. Balema, J. W. Wiench, K. W. Dennis, M. Pruski and V. K Pecharsky, J. Alloy. Comp., 329, 108 (2001).   DOI   ScienceOn
20 M. Resan, M. D. Hampton, J. K. Lomness and D. K. Slattery, Int. J. Hydrogen Energ, 30, 1413 (2005).   DOI   ScienceOn
21 R.-ud-din, Q. Xuanhui, L. Ping, L. Zhang and M. Ahmad, J. Phys. Chem. C, 115(26), 13088 (2011).   DOI   ScienceOn
22 J. W. Jang, J. H. Shim, Y. W. Cho and B. -J. Lee, J. Alloy. Comp., 420, 286 (2006).   DOI   ScienceOn
23 J. H. Shim, G. J. Lee and Y. W. Cho, J. Alloy. Comp., 417, 69 (2006).   DOI   ScienceOn
24 J. H. Shim, G. J. Lee and Y. W. Cho, J. Alloy. Comp., 419, 176 (2006).   DOI   ScienceOn
25 J. H. Shim, G. J. Lee, B. J. Lee, Y. J. Oh and Y. W. Cho, Catal. Today, 120, 292 (2007).   DOI   ScienceOn
26 J. Graetz, J. Wegrzyn and J. J. Reilly, J. Am. Chem. Soc., 130, 17790 (2008).   DOI   ScienceOn
27 J. Wang, A. D. Ebner and J. A. Ritter, J. Am. Chem. Soc., 128, 5949 (2006)   DOI   ScienceOn
28 D. S. Easton, J. H. Schneibel and S. A. Speakman, J. Alloy. Comp., 398, 245 (2005).   DOI   ScienceOn
29 X. Liu, H. W. Langmi, S. D. Beattie, F. F. Azenwi, G. S. McGrady and C. M. Jensen, J. Am. Chem. Soc., 133(39), 15593 (2011).   DOI   ScienceOn
30 A. Züttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, Ph. Mauron and Ch. Emmenegger, J. Alloy. Comp., 356-357, 515 (2003).   DOI   ScienceOn
31 Y. Nakamori and S. Orimo, J. Alloy. Comp., 370, 271 (2004).   DOI   ScienceOn
32 K. Miwa, N. Ohba, S. Towata, Y. Nakamori and S. Orimo, J. Alloy. Comp., 404-406, 140 (2005).   DOI   ScienceOn
33 J. J. Vajo, S. L Skeith and F. Mertens, J. Phys. Chem. B, 109(9), 3719 (2005).   DOI   ScienceOn
34 M. Au and A. Jurgensen, J. Phys. Chem. B, 110(13), 7062 (2006).   DOI   ScienceOn
35 Y. Kojima, K. Suzuki and Y. Kawai, J. Power Sourc., 155, 325 (2006).   DOI   ScienceOn
36 Y. Kojima, Y. Kawai, T. Haga, M. Matsumoto and A. Koiwai, J. Alloy. Comp., 441, 189 (2007).   DOI   ScienceOn
37 N. Sklar and B. Post, Inorg. Chem., 6, 669 (1967).   DOI
38 R. Ehrlich, A. R. Young II, G. Rice, J. Dvorak, P. Shapiro and H. F. Smith, J. Am. Chem. Soc., 88, 858 (1966).