• Title/Summary/Keyword: hydrogen separation

Search Result 363, Processing Time 0.032 seconds

Control of Nano-Structure of Ceramic Membrane and Its Application (세라믹 멤브레인의 나노구조 제어 및 응용)

  • Lee, Hye-Ryeon;Seo, Bong-Kuk;Choi, Yong-Jin
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.77-94
    • /
    • 2012
  • Amorphous ceramic membranes have been developed for gas phase separation and liquid phase separation (water treatment, wastewater treatment and separation of organic solvent or compounds) because of their thermal stability and solvent resistance. In this paper, ceramic membranes were categorized by membrane pore size and materials, and summarized for hydrogen separation, carbon dioxide separation, membrane reactor, pervaporation and water treatment with membrane structure and properties.

Hydrogen Permselective Membrane using the Zirconia Coated Support (지르코니아 코팅 지지체를 이용한 수소분리막)

  • Choi, Ho-Sang;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.210-216
    • /
    • 2010
  • The hydrogen permselective membrane were prepared by chemical vapor deposition (CVD) aiming at the applications to hydrogen iodide decomposition in the thermochemical IS process, and it was evaluated for the possibility as a separation membrane. An electron probe X-ray microanalyzer (EPMA) and SEM picture were used to analyze the morphology and structure of the prepared membranes. It was confirmed that Zr-Si-O layer exist in the surface of the prepared membrane using zirconia coated support. Single-component permeance to $H_2$ and $N_2$ were measured at $300{\sim}600^{\circ}C$. Hydrogen permeance through the Z-1 membrane at a permeation temperature of $600^{\circ}C$ was about $1{\times}10^{-7}\;mol{\cdot}Pa^{-1}{\cdot}m^{-2}{\cdot}s^{-1}$. The selectivities of $H_2/N_2$ at $600^{\circ}C$ were 5.0 and 5.75 for Z-1 and Z-2 membrane, respectively.

Storage and Delivery of Hydrogen Isotopes (삼중수소 저장기술)

  • Chung, Hong-Suk;Chung, Dong-You;Koo, Dae-Seo;Lee, Ji-Sung;Shim, Myung-Hwa;Cho, Seung-Yon;Jung, Ki-Jung;Yun, Sei-Hun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.372-379
    • /
    • 2011
  • A nuclear fusion fuel cycle plant is composed of various subsystems such as a hydrogen isotope storage and delivery system, a tokamak exhaust processing system, and a hydrogen isotope separation system. Korea shares in the construction of its ITER fuel cycle plant with the EU, Japan, and the US, and is responsible for the development and supply of the storage and delivery system. The authors thus present details on the development status of hydrogen isotope storage technologies for nuclear fusion fuel cycle plants. We have developed various hydride beds of different size. We have realized a hydrogen delivery rate of 12.5 $Pam^3/s$ with a typical 1242g-ZrCo bed.

Hydrogen Permeation Properties of $(Ni_{60}-Nb_{40})_{95}-Pd_5$ Amorphous Metallic Membrane ($(Ni_{60}-Nb_{40})_{95}-Pd_5$ 비정질 금속막의 수소투과 특성)

  • Lee, Dock-Young;Kim, Yoon-Bae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.359-366
    • /
    • 2008
  • Hydrogen as a high-quality and clean energy carrier has attracted renewed and ever-increasing attention around the world in recent years, mainly due to developments in fuel cells and environmental pressures including climate change issues. In this processes for hydrogen production from fossil fuels, separation and purification is a critical technology. $(Ni_{60}-Nb_{40})_{95}-Pd_5$ alloy ingots were prepared by arc-melting the mixture of pure metals in an Ar atmosphere. Melt-spun ribbons were produced by the single-roller melt-spinning technique in an Ar atmosphere. Amorphous structure and thermal behavior were characterized by XRD and DSC. The permeability of the $(Ni_{60}-Nb_{40})_{95}-Pd_5$ amorphous alloy membrane was characterized by hydrogen permeation experiments in the temperature range 623 to 773 K and pressure of 2 bars. The maximum hydrogen permeability was $3.54{\times}10^{-9}[mol{\cdot}m^{-1}s^{-1}{\cdot}pa^{-1/2}]$ at 773 K for the $(Ni_{60}-Nb_{40})_{95}-Pd_5$ amorphous alloy.

The Effect of SO2-O2 Mixture Gas on Phase Separation Composition of Bunsen Reaction with HIx solution (HIx 용액을 이용한 분젠 반응에서 상 분리 조성에 미치는 SO2-O2 혼합물 기체의 영향)

  • Han, Sangjin;Kim, Hyosub;Ahn, Byungtae;Kim, Youngho;Park, Chusik;Bae, Kikwang;Lee, Jonggyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.421-428
    • /
    • 2012
  • The Sulfur-Iodine (SI) thermochemical hydrogen production process is one of the most promising thermochemical water splitting technologies. In the integrated operation of the SI process, the $O_2$ produced from a $H_2SO_4$ decomposition section could be supplied directly to the Bunsen reaction section without preliminary separation. A $HI_x$ ($I_2+HI+H_2O$) solution could be also provided as the reactants in a Bunsen reaction section, since the sole separation of $I_2$ in a $HI_x$ solution recycled from a HI decomposition section was very difficult. Therefore, the Bunsen reaction using $SO_2-O_2$ mixture gases in the presence of the $HI_x$ solution was carried out to identify the effect of $O_2$. The amount of $I_2$ unreacted under the feed of $SO_2-O_2$ mixture gases was little higher than that under the feed of $SO_2$ gas only, and the amount of HI produced was relatively decreased. The $O_2$ in $SO_2-O_2$ mixture gases also played a role to decrease the amount of a impurity in $HI_x$ phase by only striping effect, while that in $H_2SO_4$ phase was hardly affected.

Evaluating the Efficacy of Commercial Polysulfone Hollow Fiber Membranes for Separating H2 from H2/CO Gas Mixtures (상용 폴리설폰 중공사막의 수소/일산화탄소 혼합가스 분리 성능 평가)

  • Do Hyoung Kang;Kwanho Jeong;Yudam Jeong;Seung Hyun Song;Seunghee Lee;Sang Yong Nam;Jae-Kyung Jang;Euntae Yang
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.352-361
    • /
    • 2023
  • Steam methane reforming is currently the most widely used technology for producing hydrogen, a clean fuel. Hydrogen produced by steam methane reforming contains impurities such as carbon monoxide, and it is essential to undergo an appropriate post-purification step for commercial usage, such as fuel cells. Recently, membrane separation technology has been gaining great attention as an effective purification method; in this study, we evaluated the feasibility of using commercial polysulfone membranes for biogas upgrading to separate and recover hydrogen from a hydrogen/carbon monoxide gas mixture. Initially, we examined the physicochemical properties of the commercial membrane used. We then conducted performance evaluations of the commercial membrane module under various conditions using mixed gas, considering factors such as stage-cut and operating pressure. Finally, based on the evaluation results, we carried out simulations for process design. The maximum H2 permeability and H2/CO separation factor for the commercial membrane process were recorded at 361 GPU and 20.6, respectively. Additionally, the CO removal efficiency reached up to 94%, and the produced hydrogen concentration achieved a maximum of 99.1%.

Hydrogen Separation of Carbon Molecular Sieve Membranes Derived from Polyimides Having Decomposable Side Groups (열분해성 그룹이 도입된 폴리이미드로부터 유도된 탄소분자체막의 수소 분리 특성)

  • Young Moo Lee;Youn Kook Kim;Ji Min Lee;Ho Bum Park
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.99-107
    • /
    • 2004
  • Carbon molecular sieve (CMS) membranes were prepared by pyrolysis of polyimides having carboxylic acid groups and applied to the hydrogen separation. The polymeric membranes having carboxylic acid groups showed different steric properties as compared with polymeric membranes having other side groups ($-CH_3$ and $-CF_3$) because of the hydrogen bond between the carboxylic acid groups. However, the microporous CMS membranes were significantly affected by the decomposable side groups evidenced from the wide angle X-rat diffraction, nitrogen adsorption isotherms, and single gas permeation measurement. Furthermore, the gas separation properties of the CMS membranes were essentially affected by the pyrolysis temperature. As a result, the CMS membranes Prepared by Pyrolysis of polyimide containing carboxylic acid froups at $700^{\circ}C$ showed the $H_2$ permeability of 3,809 Baller [$1{\times}10^{-10}$ H $\textrm{cm}^$(STP)cm/$\textrm{cm}^2$.s.cmHg], $H_2$/$N_2$, selectivity of 46 and $H_2$/$CH_4$ selectivity of 130 while the CMS membranes derived from polyimide showed the H$_2$ permeability of 3,272 Barrer, $H_2$/$N_2$ selectivity of 136 and $H_2$/$CH_4$ selectivity of 177.

Resourcing of Methane in the Biogas Using Membrane Process (분리막을 이용한 바이오가스의 메탄 자원화)

  • Park, Young G.;Yang, Youngsun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.406-414
    • /
    • 2014
  • Biogas is a gaseous mixture produced from microbial digestion of organic materials in the absence of oxygen. Raw biogas, depending upon organic materials, digestion time and process conditions, contains about 45-75% methane, 30-50% carbon dioxide, 0.3% of hydrogen sulfide gas and fraction of water vapor. To achieve the standard composition of the biogas the treatment techniques like absorption or membrane separation was performed for the resourcing of biogas. In this paper the experimental results of the methane purification in simulated biogas mixture consisted of methane, carbon dioxide and hydrogen sulfide were presented. The composite membrane is manufactured within polysulfone in order to increase the separation performances for the gaseous mixtures of $CO_2$ and $CH_4$ which are main components of the biogas. The effects of feed pressures and mixed gas on the separation of $CO_2-CH_4$ by membrane are investigated. Chelate chemical was utilized to treat the purification of methane from the $H_2S$ concentration of 0.3%.

Cryogenic Distillation Simulation for Hydrogen Isotopes Separation (수소 동위원소 분리를 위한 초저온증류공정 모사)

  • Noh, Sanggyun;Rho, Jaehyun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4643-4651
    • /
    • 2013
  • In this study, we have surveyed the new technologies in the cryogenic distillation of ITER, equilibrium reactors and helium refrigeration cycle contained in the isotope separation system (ISS). We also have collected thermodynamic and transport properties for $H_2$, HD, $D_2$, HT, DT and $T_2$ components of which properties are not built in a general purpose chemical process simulators such as Aspen Plus and PRO/II with PROVISION. Verification works have been performed to compare between literature data and simulation results. For the simulation of ISS involving six hydrogen isotope components, four distillation columns and two equilibrium reactors are used for the separation of $D_2$ and DT from $T_2$.