• Title/Summary/Keyword: hydrogen production yield

Search Result 155, Processing Time 0.059 seconds

Biohydrogen Production from Food Waste by Two-Stage (Lactate+Photo)-Fermentation Process (2단(유산발효+광발효) 발효공정을 통한 음식물쓰레기로부터의 수소생산)

  • Kim, Ok-Sun;Son, Han-Na;Kim, Dong-Hoon;Jeon, Dong-Jin;Rhee, Young-Woo;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.333-339
    • /
    • 2011
  • In the present work, it was attempted to produce $H_2$ from food waste by the two-stage fermentation system. Food waste was acidified to lactate by using indigenous lactic acid bacteria under mesophilic condition, and the lactate fermentation effluent (LFE) was subsequently converted to $H_2$ by photo-fermentation. $Rhodobacter$ $sphaeroides$ KD131 was used as the photo-fermenting bacteria. The optimal conditions for lactate fermentation were found to be pH of 5.5 and substrate concentration of 30 g Carbo. COD/L, under which yielded 1.6 mol lactate/mol glucose. By filtering the LFE and adding trace metal, $H_2$ production increased by more than three times compared to using raw LFE, and finally reached the $H_2$ yield of 3.6 mol $H_2$/mol lactate. Via the developed two-stage fermentation system $H_2$ yield of 5.8 mol $H_2$/mol glucose was achieved from food waste, whose value was the highest that ever recorded.

Synthesis Gas Production from Gasification of Woody Biomass (목질계 바이오매스로부터 가스화에 의한 합성가스 제조 연구)

  • Cho, Won-Jun;Mo, Yong-Gi;Song, Taek-Yong;Baek, Young-Soon;Kim, Seung-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.587-594
    • /
    • 2010
  • Hydrogen is an alternative fuel for the future energy which can reduce pollutants and greenhouse gases. Synthesis gas has played an important role of synthesizing the valuable chemical compounds, for example methanol, DME and GTL chemicals. Renewable biomass feedstocks can be potentially used for fuel and chemicals. Current thermal processing techniques such as fast pyrolysis, slow pyrolysis, and gasification tend to generate products with a large slate of compounds. Lignocellulose feedstocks such as forest residues are promising for the production of bio-oil and synthesis gas. Pyrolysis and gasification was investigated using thermogravimetric analyzer (TGA) and bubbling fluidized bed gasification reactor to utilize forest woody biomass. Most of the materials decomposed between $320^{\circ}C$ and $380^{\circ}C$ at heating rates of $5{\sim}20^{\circ}C$/min in thermogravimetric analysis. Bubbling fluidized bed reactor was used to study gasification characteristics, and the effects of reaction temperature, residence time and feedstocks on gas yields and selectivities were investigated. With increasing temperature from $750^{\circ}C$ to $850^{\circ}C$, the yield of char decreased, whereas the yield of gas increased. The gaseous products consisted of mostly CO, $CO_2$, $H_2$ and a small fraction of $C_1-C_4$ hydrocarbons.

Production of Hydrogen from Methane by 3phase AC GlidArc Plasma (3상 교류 부채꼴 방전을 이용한 메탄으로부터 수소 생산)

  • Chun, Young-Nam;Kim, Seong-Cheon;Lim, Mun-Seup
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2232-2237
    • /
    • 2007
  • Steam reforming and catalytic reforming of $CH_4$ conversion to produce synthesis gas require both high temperatures and high pressure. Non-thermal plasma is considered to be a promising technology for the hydrogen rich gas production from methane. In this study, three phase AC GlidArc plasma system was employed to investigate the effects of gas composition, gas flow rate, catalyst reactor temperature and applied electric power on the $CH_4$ and $H_2$ yield and the product distribution. The studied system consisted of three electrode and it connected AC generate power system different voltages. In this study, air was used for the partial oxidation of methane. The results showed that increasing gas flow rate, catalyst reactor temperature, or electric power enhanced $CH_4$ conversion and $H_2$ concentration. The reference conditions were found at a $O_2$/C molar ratio of 0.45, a feed flow rate of 4.9 ${\ell}$/min, and input power of 1kW for the maximum conversions of $CH_4$ with a high selectivity of $H_2$ and a low reactor energy density.

  • PDF

Hydrogen Production by Steam Reforming of Aqueous Bio-Oil from Marine Algae (수소생산을 위한 해조류 유래 수용액 상 바이오오일의 수증기 개질 반응)

  • Park, Yong Beom;Lim, Hankwon;Woo, Hee-Chul
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.94-100
    • /
    • 2016
  • Hydrogen production via steam reforming of bio-oil from algal biomass over fast pyrolysis with commercial catalysts was carried out. Aqueous bio-oil obtained by phase separation from a crude oil over fast pyrolysis was used as a reactant and comparison studies for activity over different catalysts (FCR-4-02, POS-7, Cat. A, RUA), reaction temperature, and steam/carbon (S/C) ratios were performed. Experimental results showed that different catalytic activities were observed with different S/C ratios and catalyst composition and the highest hydrogen yield of 70% was obtained with a POS-7 catalyst at a S/C ratio of 10 and 1073 K.

Ethanol Steam Reforming Reaction for a Clean Hydrogen Production and its Application in a Membrane Reactor (청정수소생산을 위한 에탄올 수증기개질반응 및 막반응기에서의 응용)

  • Lim, Hankwon
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.379-387
    • /
    • 2013
  • Ethanol steam reforming reaction considered as a clean hydrogen production method is introduced in this paper. Reactivity and reaction rate equation of ethanol steam reforming reaction using various catalysts, reaction temperature, and molar ratio of ethanol and water will be discussed. In addition to introducing a membrane reactor combining a reactor and a separator, the effect of the use of a membrane reactor on an ethanol conversion and hydrogen yield will be compared to those from a conventional packed-bed reactor.

Effect of Culture Conditions on the production of Succinate by Enterococcus faecalis RKY1

  • Kang, Kui-Hyun;Yun, Jong-Sun;Ryu, Hwa-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • Bioconversion of fumarate to succinate was anaerobically conduced in a synthetic medium containing glycerol as a hydrogen donor and fumarate as a hydrogen acceptor. We investigated the effects of pH, carbon and nitrogen sources, conversion substrate, and other culture conditions on the production of succinate using a nwely isoloated Enterococcus facalis PKY1. Addition of a variety of carbonates to the medium significantly increasd the rates of production of succinate. The production of succinate and cell growth were relatively satisfactory in the pH range of 7.0-7.6. By using glycerol as a hydrogen donor, high purity succinate was produced with few byproducts. Yeast extract as a sole nitrogen source was the most effective for producing succinalte. As a result, the optimum condition of biconversion was obtained at a medium containing 20g/I glycerol, 50 g/l fumarate, 15 g/l yeast extract, 10 g/l $K_2HPO_4$, 1 g/I NaCl, 50ppm $MgCl_2{\cdot}6H_2O$, 10ppm $FeSo_4{\cdot}7H_2O$, and 5 g/I $Na_2CO_3$ at pH 7.0-7.6. Under the optimum condition, a succinate concentration of 153 g/I was produced in 36 h. The total volumetric production rate and the molar yield of succinate were 4.3 g/l/h and 85%, respectively.

  • PDF

Effect of Heat Treatment on the Start-up Performance for Anaerobic Hydrogen Fermentation of Food Waste (음식폐기물을 이용한 혐기성 수소 발효 시 초기 운전 성능에 대한 열처리 효과)

  • Lee, Chae-Young;Lee, Se-Wook;Hwang, Sun-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.765-771
    • /
    • 2011
  • This study was conducted to investigate the effect of heat treatment on the start-up performance for anaerobic hydrogen fermentation of food waste. The result showed that hydrogen production was $0.61{\pm}0.31$ mol $H_2$/mol hexose with heat-treatment of food waste at $70^{\circ}C$ for 60 min whereas it was $0.36{\pm}0.31$ mol $H_2$/mol hexose without heat-treatment of one. The heat treatment of food waste enhanced hydrogen yield due probably to the increase of hydrolysis as well as the decrease of non-hydrogen fermentation microorganisms. The removal efficiency of carbohydrate in reactors regardless of heat treatment of food waste maintained over 90%. The hydrogen conversion efficiency from food waste was 1.7-6.3% with heat-treatment whereas it was 0.7-4.5% without heat-treatment. At the time of switchover from batch to continuous operation, lactate concentration was high compared to the n-butyrate concentration in anaerobic hydrogen fermentation reactor without heat-treatment. Anaerobic hydrogen fermentation of food waste with heat treatment was stable in start-up periods because lactate concentration could be maintained at a relatively low compared to n-butyrate concentration due to the decrease of non-hydrogen fermentation microorganisms.

Improvement of the Bioethanol Productivity from Debranned Barley (보리의 도정을 통한 바이오에탄올 생산성 향상 연구)

  • JEON, HYUNGJIN;KIM, YULE;KIM, SHIN;JEONG, JUN-SEONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.648-653
    • /
    • 2018
  • Bran of barley causes high viscosity in bioethanol production due to the large amount of ${\beta}$-glucans and fiber. High viscosity is the main cause of decreased productivity and decreased facility efficiency in ethanol production. In order to prevent high viscosity, this study investigated the possibility of bioethanol from barley by debranning. As a result, it was able to reduced the viscosity (22.8 cP to 17.5 cP). And the fermentation speed and yield were improved as the activity of the enzyme and activity of yeast was also increased was improved due to the removal of non-fermentable components. In conclusion, debranning was advantageous in two ways. Firstly, bran removal increased the starch content of the feedstock and decreased viscosity of mash, improving ethanol fermentation. Secondly, by-products produced by debranning can use valuable products. It was remarkable results to the feasibility of bioethanol production from debranned barley.

Hydorgen Production by Catalytic Decomposition of Propane Over Cabon-Based Catalyst (탄소계 촉매를 이용한 프로판 분해 반응에 의한 수소 생산)

  • Yoon, Suk Hoon;Han, Gi Bo;Lee, Jong Dae;Park, No-Kuk;Ryu, Si Ok;Lee, Tae Jin;Yoon, Ki June;Han, Gui Young
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.668-674
    • /
    • 2005
  • It is reported that a method for the hydrogen production from the propane decomposition using carbon black as a catalyst is more effective than from the methane decomposition. Since the by-products like CO and $CO_2$ are not produced by the direct decomposition of propane, it is considered as an environmentally sustainable process. In this study, hydrogen was produced by the direct decomposition of propane using either commercial activated carbon or carbon black at atmospheric pressure in the temperature range of $500-1,000^{\circ}C$. Resulting products in our experiment were not only hydrogen but also several by-products such as methane, ethylene, ethane, and propylene. Hydrogen yield increased as temperature increased because the amount of those by-products produced in the experiment was inversely proportional to temperature. The achieved hydrogen yield at $750^{\circ}C$ with commercial DCC N330 catalyst was 22.47% in this study.

Experiment of DME autothermal reforming with CGO-based catalysts (CGO 담지 귀금속 촉매를 이용한 DME 자열개질 특성 연구)

  • Choi, Seunghyeon;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.158.2-158.2
    • /
    • 2011
  • DME is acronym of dimethyl ether, which is spotlighted as an ideal fuel to produce hydrogen due to its high hydrogen/carbon ratio, high energy density and easiness to carry. In this research, we calculated thermodynamic hydrogen (or syngas) yield from DME autothermal reforming and compared to other fuels. The reforming efficiency was about 80% above $700^{\circ}C$. Lower OCR has higher reforming efficiency but, it requires additional heat supply since the reactions are endothermic. SCR has no significant effect on the reforming efficiency. The optimized condition is $700^{\circ}C$, SCR 1.5, OCR 0.45 without additional heat supply. Comparing to other commercial gaseous fuels (methane and propane), DME has higher selectivity of $H_2O$ and $CO_2$ than the others due to the oxygen atom in the molecule. To apply DME autothermal reforming to real system, a proper catalyst is required. Therefore, it is performed the experiment comparing various novel metal catalysts based on CGO. Experiments were performed at calculated condition. The composition of product was measured and reforming efficiency was calculated. The catalysts have similar efficiency at high temperature(${\sim}800^{\circ}C$) but, CGO-Ru has the highest efficiency at low temperature ($600^{\circ}C$).

  • PDF