Browse > Article
http://dx.doi.org/10.7464/ksct.2013.19.4.379

Ethanol Steam Reforming Reaction for a Clean Hydrogen Production and its Application in a Membrane Reactor  

Lim, Hankwon (Department of Chemical Systematic Engineering, Catholic University of Daegu)
Publication Information
Clean Technology / v.19, no.4, 2013 , pp. 379-387 More about this Journal
Abstract
Ethanol steam reforming reaction considered as a clean hydrogen production method is introduced in this paper. Reactivity and reaction rate equation of ethanol steam reforming reaction using various catalysts, reaction temperature, and molar ratio of ethanol and water will be discussed. In addition to introducing a membrane reactor combining a reactor and a separator, the effect of the use of a membrane reactor on an ethanol conversion and hydrogen yield will be compared to those from a conventional packed-bed reactor.
Keywords
Ethanol steam reforming reaction; Catalyst; Reaction rate equation; Membrane reactor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lim, H., Gu, Y., and Oyama, S. T., "Reaction of Primary and Secondary Products in a Membrane Reactor: Studies of Ethanol Steam Reforming with a Silica-alumina Composite Membrane," J. Membr. Sci., 351, 149-159 (2010).   DOI   ScienceOn
2 Klouz, V., Fierro, V., Denton, P., Katz, H., and Lisse, J. P., Bouvot-Mauduit, S., and Mirodatos, C., "Ethanol Reforming for Hydrogen Production in a Hybrid Electric Vehicle: Process Optimisation," J. Power Sources, 105, 26-34 (2002).   DOI   ScienceOn
3 Marino, F., Boveri, M., Baronetti, G., and Laborde, M., "Hydrogen Production from Steam Reforming of Bioethanol Using Cu/Ni/K/g-$Al_2O_3$ Catalysts. Effectof Ni," Int. J. Hydrogen Energy, 26, 665-668 (2001).   DOI   ScienceOn
4 Llorca, J., Homs, N., Sales, J., Fierro, J.- L. G., and Piscina, P. R. de la, "Effect of Sodium Addition on the Performance of Co-ZnO-based Catalysts for Hydrogen Production from Bioethanol," J. Catal., 222, 470-480 (2004).   DOI   ScienceOn
5 Diagne, C., Idriss, H., and Kiennemann, A., "Hydrogen Production by Ethanol Steam Reforming over $Rh/CeO_2-ZrO_2$ Catalysts," Catal. Commun., 3, 565-571 (2002).   DOI   ScienceOn
6 Sun, J., Qiu, X., Wu, F., Zhu, W., Wang, W., and Hao, S., "Hydrogen from Steam Reforming of Ethanol in Low and Middle Temperature Range for Fuel Cell Application," Int. J. Hydrogen Energy, 29, 1075-1081 (2004).   DOI   ScienceOn
7 Batista, M. S., Santos, R. K. S., Assaf, E. M., Assaf, J. M., and Ticianelli, E. A., "High Efficiency Steam Reforming of Ethanol by Cobalt-based Catalysts," J. Power Sources, 134, 27-32 (2004).   DOI   ScienceOn
8 Biswas, P., and Kunzru, D., "Steam Reforming of Ethanol for Production of Hydrogen over $Ni/CeO_2-ZrO_2$ Catalyst: Effect of Support and Metal Loading," Int. J. Hydrogen Energy, 32, 969-980 (2007).   DOI   ScienceOn
9 Kwak, B. S., Kim, J., and Kang, M., "Hydrogen Production from Ethanol Steam Reforming over Coreeshell Structured $Ni_xO_{y-},\;Fe_xO_{y-},\;and\;Co_xO_{y-}Pd $ Catalysts," Int. J. Hydrogen Energy, 35, 11829-11843 (2010).   DOI   ScienceOn
10 Abdelkader, A., Daly, H., Saih, Y., Morgan, K., Mohamed, M. A., Halawy, S. A., and Hardacre, C., "Steam Reforming of Ethanol over $Co_3O_{4-}Fe_2O_3$ Mixed Oxides," Int. J. Hydrogen Energy, 38, 8263-8275 (2013).   DOI   ScienceOn
11 Han, S. J., Bang, Y., Yoo. J., Seo J. G., and Song, I. K., "Hydrogen Production by Steam Reforming of Ethanol over Mesoporous $Ni-Al_2O_{3-}ZrO_2$ xerogel catalysts: Effect of Nickel Content," Int. J. Hydrogen Energy, 38, 8285-8292 (2013).   DOI   ScienceOn
12 Xu, J., and Froment, G. F. "Methane Steam Reforming, Methanation and Water-gas Shift: I. Intrinsic Kinetics," AIChE J., 35, 88-96 (1989).   DOI   ScienceOn
13 Therdthianwong , A., Sakulkoakiet, T., and Therdthianwong, S., "Hydrogen Production by Catalytic Ethanol Steam Reforming," ScienceAsia, 27, 193-198 (2001).   DOI
14 Sun, J., Qiu, X.-P., Wu, F., and Zhu, W.-T., "$H_2$ from Steam Reforming of Ethanol at Low Temperature over $Ni/Y_2O_3,\;Ni/La_2O_3\;and\;Ni/Al_2O_3$ Catalysts for Fuel-cell Application," Int. J. Hydrogen Energy, 30, 437-445 (2005).   DOI   ScienceOn
15 Orucu, E., Gokaliler, F., Aksoylu, A. E., and Onsan, Z. I., "Ethanol Steam Reforming for Hydrogen Production over Bimetallic $Pt-Ni/Al_2O_3$," Catal. Lett., 120, 198-203 (2008).   DOI
16 Akande, A., Aboudheir, A., Idem, R., and Dalai, A., "Kinetic Modeling of Hydrogen Production by the Catalytic Reforming of Crude Ethanol over a Co-precipitated $Ni/Al_2O_3$ Catalyst in a Packed Bed Tubular Reactor," Int. J. Hydrogen Energy, 31, 1707-1715 (2006).   DOI   ScienceOn
17 Yun, S., Lim, H., and Oyama, S. T., "Experimental and Kinetic Studies of the Ethanol Steam Reforming Reaction Equipped with Ultrathin Pd and Pd-Cu Membranes for Improved Conversion and Hydrogen yield," J. Membr. Sci., 409-410, 222-231 (2012).   DOI   ScienceOn
18 Vaidya, P. D., and Rodrigues, A. E., "Kinetics of Steam Reforming of Ethanol over a $Ru/Al_2O_3$ Catalyst," Ind. Eng. Chem. Res., 45, 6614-6618 (2006).   DOI   ScienceOn
19 Veronica, M., Graciela, B., Norma, A., and Miguel, L., "Ethanol Steam Reforming Using Ni(II)-Al(III) Layered Double Hydroxide as Catalyst Precursor Kinetic study," Appl. Chem. Eng. J., 138, 602-607 (2008).   DOI   ScienceOn
20 Sanchez Marcano, J. G., and Tsotsis, T. T., Catalytic Membranes and Membrane Reactors, 1st ed., WILEY-VCH, Weinheim, 2002, p.5.
21 De Vos, R. M., and Verweij, H., "High-Selectivity, High-Flux Silica Membranes for Gas Separation," Science, 279, 1710-1711 (1998).   DOI   ScienceOn
22 Tsapatsis, M., and Gavalas, G., "Structure and Aging Characteristics of H2-Permselective $SiO_2$-Vycor Membranes," J. Membr. Sci., 87, 281-296 (1994).   DOI   ScienceOn
23 Kusakabe, K., Sakamoto, S., Saie, T., and Morooka, S., "Pore Structure of Silica Membranes Formed by a Sol-Gel Technique Using Tetraethoxysilane and Alkyltriethoxysilanes," Sep. Purif. Technol., 16, 139-146 (1999).   DOI   ScienceOn
24 Fujii,T., Yano, T., Nakamura, K., and Miyawaki, O., "The Sol-Gel Preparation and Characterization of Nanoporous Silica Membrane with Controlled Pore Size," J. Membr. Sci.,187, 171-180 (2001).   DOI   ScienceOn
25 Pakizeh, M., Omidkhah, M. R., and Zarringhalam A., "Synthesis and Characterization of New Silica Membranes Using Template-Sol-Gel Technology," Int. J. Hydrogen Energy, 32, 1825-1836 (2007).
26 Morooka, S., Yan, S., Kusakabe, K., and Akiyama, Y., "Formation of Hydrogen Permselective $SiO_2$ Membrane in Macropores of a Alumina Support Tube by Thermal Decomposition of TEOS," J. Membr. Sci., 101, 89-98 (1995).   DOI   ScienceOn
27 Gu, Y., and Oyama, S. T., "Ultrathin, Hydrogen-Selective Silica Membranes Deposited on Alumina-Graded Structures Prepared from Size-Controlled Boehmite Sols," J. Membr. Sci., 306, 216-227 (2007).   DOI   ScienceOn
28 Khatib, S. J., and Oyama, S. T., "Silica Membranes for Hydrogen Separation Prepared by Chemical Vapor Deposition (CVD)," Sep. Purif. Technol., 111, 20-42 (2013).   DOI   ScienceOn
29 Gu, Y., Hacarlioglu, P., and Oyama, S. T., "Hydrothermally Stable Silica-Alumina Composite Membranes for Hydrogen Separation," J. Membr. Sci., 310, 28-37 (2008).   DOI   ScienceOn
30 Gu, Y., and Oyama, S. T., "Permeation Properties and Hydrothermal Stability of Silica-Titania Membranes Supported on Porous Alumina Substrates," J. Membr. Sci., 345, 267-275 (2009).   DOI   ScienceOn
31 Kanezashi, M., and Asaeda, M., "Hydrogen Permeation Characteristics and Stability of Ni-Doped Silica Membranes in Steam at High Temperature,", J. Membr. Sci., 271, 86-93 (2006).   DOI   ScienceOn
32 Boffa, V., Blank, D. H. A., and Ten Elshof J. E., "Hydrothermal Stability of Microporous Silica and Niobia-Silica Membranes," J. Membr. Sci., 319, 56-263 (2008).
33 Yan, S., Maeda, H., Kusakabe, K., and Morooka, S., "Thin Palladium Membrane Formed in Support Pores by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation," Ind. Eng. Chem. Res., 33, 616-622 (1994).   DOI
34 Xomeritakis, G., and Lin, Y. S., "Fabrication of a Thin Palladium Membrane Supported in a Porous Ceramic Substrate by Chemical Vapor Deposition," J. Membr. Sci., 120, 261-272 (1996).   DOI   ScienceOn
35 Huang, L., Chert, C. S., He, Z. D., Peng, D. K., and Meng, G. Y., "Palladium Membranes Supported on Porous Ceramics Prepared by Chemical Vapor Deposition," Thin Solid Films, 302, 98-101 (1997).   DOI   ScienceOn
36 Jun, C.-S., and Lee, K.-H., "Palladium and Palladium Alloy Composite Membranes Prepared by Metal-organic Chemical Vapor Deposition Method (Cold-Wall)," J. Membr. Sci., 176, 121-130 (2000).   DOI   ScienceOn
37 Yeung, K. L., Christiansen, S. C., and Varma, A., "Palladium Composite Membranes by Electroless Plating Technique: Relationships between Plating Kinetics, Film Microstructure and Membrane Performance," J. Membr. Sci., 159, 107-122 (1999).   DOI   ScienceOn
38 Uemiya, S., Matsuda, T., and Kikuchi, E., "Hydrogen Permeable Palladium-Silver Alloy Membrane Supported on Porous Ceramics," J. Membr. Sci., 56, 315-325 (1991).   DOI   ScienceOn
39 Cheng, Y. S., and Yeung, K. L., "Effects of Electroless Plating Chemistry on the Synthesis of Palladium Membranes," J. Membr. Sci., 182, 195-203 (2001).   DOI   ScienceOn
40 Gade, S. K., Thoen, P. M., and Way, J. D., "Unsupported Palladium Alloy Foil Membranes Fabricated by Electroless Plating," J. Membr. Sci., 316, 112-118 (2008).   DOI   ScienceOn
41 Tong, J., Su, L., Kashima, Y., Shirai, R., Suda, H., and Matsumura, Y., "Simultaneously Depositing Pd-Ag Thin Membrane on Asymmetric Porous Stainless Steel Tube and Application to Produce Hydrogen from Steam Reforming of Methane," Ind. Eng. Chem. Res. 45, 648-655 (2006).   DOI   ScienceOn
42 Peters, T., Tucho, W. M., Ramachandran A., Stange, M., Walmsley, J. C., Holmestad, R., Borg, A., and Bredesen, R., "Thin Pd-23%Ag/Stainless Steel Composite Membranes: Long- Term Stability, Life-Time Estimation and Post-Process Characterization," J. Membr. Sci., 326, 572-581 (2009).   DOI   ScienceOn
43 Nam, S.-E., and Lee, K.-H., "Hydrogen Separation by Pd Alloy Composite Membranes: Introduction of Diffusion Barrier," J. Membr. Sci., 192, 177-185 (2001).   DOI   ScienceOn
44 Roa, F., Way, J. D., McCormick, R. L., and Paglieri, S. N., "Preparation and Characterization of Pd-Cu Composite Membranes for Hydrogen Separation," Chem. Eng. J., 93, 11-22 (2003).   DOI   ScienceOn
45 Kulprathipanja, A., Alptekin, G. O., Falconer, J. L., and Way, J. D., "Pd and Pd-Cu Membranes: Inhibition of $H_2$ Permeation by $H_2S$," J. Membr. Sci., 254, 49-62 (2005).   DOI   ScienceOn
46 Chen, C.-H., and Ma, Y. H., "The Effect of $H_2S$ on the Performance of Pd and Pd/Au Composite Membrane," J. Membr. Sci., 362, 535-544 (2010).   DOI   ScienceOn
47 Thoen, P. M., Roa, F., and Way, J. D., "High Flux Palladium- Copper Composite Membranes for Hydrogen Separations," Desalination, 193, 224-229 (2006).   DOI   ScienceOn
48 O'Brien, C. P., Howard, B. H., Miller, J. B., Morreale, B. D., and Gellman, A. J.,"Inhibition of Hydrogen Transport through Pd and $Pd_{47}Cu_{53} $ Membranes by $H_2S$ at $350^{\circ}C$," J. Membr. Sci., 349, 380-384 (2010).   DOI   ScienceOn
49 Gade, S. K., Payzant, E. A., Park, H. J., Thoen, P. M., and Way, J. D., "The Effects of Fabrication and Annealing on the Structure and Hydrogen Permeation of Pd-Au Binary Alloy Membranes," J. Membr. Sci., 340, 227-233 (2009).   DOI   ScienceOn
50 Shi, L., Goldbach, A., Zeng, G., and Xu, H., "Preparation and Performance of Thin-Layered PdAu/Ceramic Composite Membranes," Int. J. Hydrogen Energy, 35, 4201-4208 (2010).
51 Gade, S. K., DeVoss, S. J., Coulter, K. E., Paglieri, S. N., Alptekin, G. O., and Way, J. D., "Palladium-Gold Membranes in Mixed Gas Streams with Hydrogen Sulfide: Effect of Alloy Content and Fabrication Technique," J. Membr. Sci., 378, 35-41 (2011).   DOI   ScienceOn
52 Gade, S. K., Keeling, M. K., Davidson, A. P., Hatlevik, O., and Way, J. D., "Palladium-Ruthenium Membranes for Hydrogen Separation Fabricated by Electroless Co-Deposition," Int. J. Hydrogen Energy, 34, 6484-6491 (2009).   DOI   ScienceOn
53 Ryi, S.-K., Li, A., Lim, C. J., and Grace, J. R., "Novel Non-Alloy Ru/Pd Composite Membrane Fabricated by Electroless Plating for Hydrogen Separation," Int. J. Hydrogen Energy, 36, 9335-9340 (2011).   DOI   ScienceOn
54 Hacarlioglu, P., Gu, Y., and Oyama, S. T., "Studies of the Methane Steam Reforming Reaction at High Pressure in a Ceramic Membrane Reactor," J. Nat. Gas Chem., 15, 73-81 (2006).   DOI   ScienceOn
55 Lee, D., Hacarlioglu, P., and Oyama, S. T., "The Effect of Pressure in Membrane Reactors: Trade-off in Permeability and Equilibrium Conversion in the Catalytic Reforming of $CH_4$ with $CO_2$," Top. Catal., 29, 45-57 (2004).   DOI   ScienceOn
56 Tsuru, T., Yamaguchi, K., Yoshioka, T., and Asaeda, M., "Methane Steam Reforming by Microporous Catalytic Membrane Reactors," AICHE J., 50, 2794-2805 (2004).   DOI   ScienceOn
57 Tong, J., and Matsumura, Y., "Effect of Catalytic Activity on Methane Steam Reforming in Hydrogen-permeable Membrane Reactor," Appl. Catal. A, 286, 226-231 (2005).   DOI   ScienceOn
58 Kikuchi, E., Kawabe, S., and Matsukata, M., "Steam Reforming of Methanol on $Ni/Al_2O_3$ Catalyst in a Pd-membrane Reactor," J. Jpn. Petro. Inst., 46, 93-98 (2003).   DOI
59 Tosti, S., Basile, A., Borgognoni, F., Capaldo, V., Cordiner, S., Di Cave, S., Gallucci, F., Rizzello, C., Santucci, A., and Traversa, E., "Low Temperature Ethanol Steam Reforming in a Pd-Ag Membrane Reactor Part 1: Ru-based Catalyst," J. Membr. Sci., 308, 250-257 (2008).   DOI   ScienceOn
60 Tosti, S., Basile, A., Borgognoni, F., Capaldo, V., Cordiner, S., Di Cave, S., Gallucci, F., Rizzello, C., Santucci, A., and Traversa, E., "Low-temperature Ethanol Steam Reforming in a Pd-Ag Membrane Reactor Part 2. Pt-based and Ni-based Catalysts and General Comparison," J. Membr. Sci., 308, 258-263 (2008).   DOI   ScienceOn
61 Yu, C.-Y., Lee, D.-W., Park, S.-J., Lee, K.-Y., and Lee, K.-H., "Ethanol Steam Reforming in a Membrane Reactor with Pt- Impregnated Knudsen Membranes," Appl. Catal. B, 86, 121-126 (2009).   DOI   ScienceOn
62 Oyama, S. T., and Lim, H.,, "An Operability Level Coefficient (OLC) as a Useful Tool for Correlating the Performance of Membrane Reactors," Chem. Eng. J., 151, 351-358 (2009).   DOI   ScienceOn
63 Lopez, E., Divins, N. J., and Llorca, J., "Hydrogen Production from Ethanol over Pd-Rh/$CeO_2$ with a Metallic Membrane Reactor," Catal. Today, 193, 145-150 (2012).   DOI   ScienceOn
64 Lim, H., Gu, Y., and Oyama, S. T., "Studies of the Effect of Pressure and Hydrogen Permeance on the Ethanol Steam Reforming Reaction with Palladium- and Silica-Based Membranes," J. Membr. Sci., 396, 119-127 (2012).   DOI   ScienceOn