Browse > Article
http://dx.doi.org/10.9713/kcer.2016.54.1.94

Hydrogen Production by Steam Reforming of Aqueous Bio-Oil from Marine Algae  

Park, Yong Beom (Department of Chemical Engineering, Pukyong National University)
Lim, Hankwon (Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu)
Woo, Hee-Chul (Department of Chemical Engineering, Pukyong National University)
Publication Information
Korean Chemical Engineering Research / v.54, no.1, 2016 , pp. 94-100 More about this Journal
Abstract
Hydrogen production via steam reforming of bio-oil from algal biomass over fast pyrolysis with commercial catalysts was carried out. Aqueous bio-oil obtained by phase separation from a crude oil over fast pyrolysis was used as a reactant and comparison studies for activity over different catalysts (FCR-4-02, POS-7, Cat. A, RUA), reaction temperature, and steam/carbon (S/C) ratios were performed. Experimental results showed that different catalytic activities were observed with different S/C ratios and catalyst composition and the highest hydrogen yield of 70% was obtained with a POS-7 catalyst at a S/C ratio of 10 and 1073 K.
Keywords
Marine Algae; Fast Pyrolysis; Steam Reforming; Nickel Catalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 David, S. S., "Inside Fuelcells," International Journal of Hydrogen Energy, 29(12), 1203-1211(2004).   DOI
2 Stephen, E. and James, E., "A Cost Comparison of Fuel-cell and Battery Electric Vehicles," Journal of Power Sources, 130, 208-212(2004).   DOI
3 Sonal, S., Shikha, J., Venkateswaran, P. S., Avanish, K. T., Mansa, R. N., Jitendra, K. P. and Sanket, G., "Hydrogen: A Sustainable Fuel for Future of the Transport Sector," Renewable and Sustainable Energy Reviews, 51, 623-633(2015).   DOI
4 Park, S., Bang, Y., Han S. J., Yoo, J., Song, J. H., Song, J. C., Lee, J. and Song, I. K., "Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) over Mesoporous Nickel-iron-alumina Catalysts," International Journal of Hydrogen Energy, 40(17), 5869-5877(2015).   DOI
5 Feyza, K. Burcu, S. C., Z. Llsen, O. and A. Erhan, A., "Hydrogen Production by Autothermal Reforming of LPG for PEM Fuel cell Applications," International Journal of Hydrogen Energy, 33(4), 1383-1391(2008).   DOI
6 Elka, K., Marga, M. P., Astrid, J. and Heike, E., "Hydrogen Production by Bioethanol Partial Oxidation over Ni Based Catalysts," Applied Catalysis B: Environmental, 179, 509-520(2015).   DOI
7 Lihong, H., Fangbai, Z., Rongrong, C. and Andrew, T. H., "Manganese-promoted Nickel/alumina Catalysts for Hydrogen Production Via Auto-thermal Reforming Ethanol," International Journal of Hydrogen Energy, 37(21), 15908-15913(2012).   DOI
8 Huber, G. W., Iborra, S. and Corma, A., "Synthesis of Transportation Fuels From Biomass: Chemistry, Catalysts, and Engineering," Chemical Reviews, 106, 4044-4098(2006).   DOI
9 Rostrup-Nielsen, J. R., Sehested, J. and Norskov, J. K., "Hydrogen and Synthesis Gas by Steam- and $CO_2$ Refirming," Advances in Catalysis, 47, 65-139(2002).
10 Wu, C., Huang, Q., Sui, M., Yan, Y. and Wang, F., "Hydrogen Production via Catalytic Steam Reforming of Fast Pyrolysis Bio-oil in a Two-stage Fixed Bed Reactor System," Fuel Process Technology, 89(12), 1306-1316(2008).   DOI
11 Fatsikostas, A. N. and Verykios, X. E., "Reaction Network of Steam Reforming of Ethanol over Ni-based Catalysts," Journal of Catalysis, 225(2), 439-452(2004).   DOI
12 Luo, L., Van der Voet, E. and Huppes, G., "Biorefining of Lignocellulosic Feedstock - Technical, Economic and Environmental Considerations," Bioresource Technology, 101, 5023-5032(2010).   DOI
13 Christensen, J. M., Mortensen, P. M., Trane, R., Jensen A. D. and Jensen, P. A., "Effects of $H_2S$ and Process Conditions in the Synthesis of Mixed Alcohols from Syngas over Alkali Promoted Cobalt-molybdenum Sulfide," Applied Catalysis A: General, 366, 29-43(2009).   DOI
14 Raffelt, K., Henrich, E., Kogel, A., Stahl, R., Steinhardt, J. and Weirich, F., "The BTL2 Process of Biomass Utilization Entrainedflow Gasification of Pyrolyzed Biomass Slurries," Applied Biochemistry and Biotechnology, 129, 153-164(2006).   DOI
15 Choi, J. H., Woo, H. C. and Suh, D. J., "Pyrolysis of Seaweeds for Bio-oil and Bio-char Production," Chemical Engineering Transactions, 37, 121-126(2014).
16 Medrano, J. A., Oliva, M., Ruiz, J. and Garcia, L., "Hydrogen from Aqueous Fraction of Biomass Pyrolysis Liquids by Catalytic Steam Reforming in Fluidized Bed," Energy, 36, 2215-2224(2011).   DOI
17 Ping, L., Qingli, X., Ming, Z., Lihong, L., Suping, Z. and Yongjie, Y., "Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in Fixed and Fluidized Bed Reactors," Chemical Engineering Technology, 33(12), 2021-2028(2010).   DOI