• Title/Summary/Keyword: hydrogen peroxide stress

Search Result 506, Processing Time 0.028 seconds

Neuroprotective Effects of Methanol Extracts of Jeju Native Plants on Hydrogen Peroxide-induced Cytotoxicity in SH-SY5Y Human Neuroblastoma Cells

  • Kong, Pil-Jae;Kim, Yu-Mi;Lee, Hee-Jae;Kim, Sung-Soo;Yoo, Eun-Sook;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.171-174
    • /
    • 2007
  • Neuronal death is a common characteristic hallmark of a variety of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. However, there have been no effective drugs to successfully prevent neuronal death in those diseases, whereas oriental medicinal plants have to possess valuable therapeutic potentials to treat neurodegenerative diseases. In the present study, in an attempt to provide neuroprotective agents from natural plants, 80% methanol extracts of a wide range of medicinal plants, which are native to Jeju Island in Korea, were prepared and their protective effects on hydrogen peroxide-induced apoptotic cell death were examined. Among those tested, extracts from Smilax china and Saururus chinesis significantly decreased hydrogen peroxide-induced apoptotic cell death. The extracts attenuated hydrogen peroxide($H_2O_2$)-induced caspase-3 activation in a dose-dependent manner. Further, plant extracts restored $H_2O_2$-induced depletion of intracellular glutathione, a major endogenous antioxidant. The data suggest that Jeju native medicinal plants could potentially be used as therapeutic agents for treating or preventing neurodegenerative diseases in which oxidative stress is implicated.

Suppressive Effect of Galangin on the Formation of 8-OH2'dG and DNA Single Strand Breaks by Hydrogen Peroxide ($H_2O_2$ 유도 8-OH2'dG 생성 및 DNA Single Strand Break에 미치는 Galangin의 억제효과)

  • Kim, Soo-Hee;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.54 no.1
    • /
    • pp.32-38
    • /
    • 2010
  • The aim of this study was to evaluate the effect of galangin towards hydrogen peroxide-induced DNA damage. The calf thymus DNA and Chinese Hamster Lung (CHL) cells were used to measure 8-hydroxy-2'-deoxyguanosine(8-OH2'dG) as an indicator of DNA oxidative damage using high performance liquid chromatography with electrochemical detection. Hydrogen peroxide in the presence of Fe(II) ion induced the formation of 8-OH2'dG in both calf thymus DNA and CHL cells. The DNA damage effects were enhanced by increasing the concentration of Fe(II) ion and inhibited by galangin. In the single cell gel electrophoresis (Comet assay), galangin and dl-a-tocopherol showed an inhibitory effect in CHL on hydrogen peroxide induced DNA single strand breaks. Galangin showed more potent activity than dl-$\alpha$-tocopherol under our experimental conditions. These results indicate that galangin can modify the action mechanisms of the oxidative DNA damage and may act as chemopreventive agents against oxidative stress.

Transcription of Schizosaccharomyces pombe Thioltransferase-1 in Response to Stress Conditions

  • Kim, Min-Jung;Lim, Chang-Jin;Kim, Dae-Myung
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.409-413
    • /
    • 2002
  • Thioltransferase, also known as glutaredoxin, is an enzyme that catalyzes the reduction of a variety of disulfide compounds. In Schizosaccharomyces pombe, two thioltransferases were reported and the cDNA of one of the thioltransferases (thioltransferase-1) was cloned. Using a Northern blot assay, we investigated the thioltransferase transcription in response to various stress conditions. When the culture was shifted to a high temperature, the thioltransferases transcription was not significantly changed compared to the unshifted $30^{\circ}C$ culture. Treatment of zinc chloride to exponentially-growing cells remarkably increased the thioltransferase transcription, whereas the treatment of mercury chloride greatly reduced the transcription. Treatment of hydrogen peroxide and cadmium chloride caused no significant effects on the transcription of the thioltransferase. These results suggest that the transcription of thioltransferase-1 in S. pombe is induced in response to metal stress that is caused by zinc chloride, but not in response to heat stress or oxidative stress that is caused by hydrogen peroxide.

Vascular Cell Responses against Oxidative Stress and its Application

  • Ryoo, Sung-Woo;Lee, Sang-Ki;Kim, Cuk-Seong;Jeon, Byeong-Hwa
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-9
    • /
    • 2004
  • The history of studies in biology regarding reactive oxygen species (ROS) is approximately 40 years. During the initial 30 years, it appeared that these studies were mainly focused on the toxicity of ROS. However, recent studies have identified another action regarding oxidative signaling, other than toxicity of ROS. Basically, it is suggested that ROS are reactive, and degenerate to biomolecules such as DNA and proteins, leading to deterioration of cellular functions as an oxidative stress. On the other hand, recent studies have shown that ROS act as oxidative signaling in cells, resulting in various gene expressions. Recently ROS emerged as critical signaling molecules in cardiovascular research. Several studies over the past decade have shown that physiological effects of vasoactive factors are mediated by these reactive species and, conversely, that altered redox mechanisms are implicated in the occurrence of metabolic and cardiovascular diseases ROS is a collective term often used by scientist to include not only the oxygen radicals($O2^{-{\cdot}},\;{^{\cdot}}OH$), but also some non-radical derivatives of oxygen. These include hydrogen peroxide, hypochlorous acid (HOCl) and ozone (O3). The superoxide anion ($O2^{-{\cdot}}$) is formed by the univalent reduction of triplet-state molecular oxygen ($^3O_2$). Superoxide dismutase (SOD)s convert superoxide enzymically into hydrogen peroxide. In biological tissues superoxide can also be converted nonenzymically into the nonradical species hydrogen peroxide and singlet oxygen ($^1O_2$). In the presence of reduced transition metals (e.g., ferrous or cuprous ions), hydrogen peroxide can be converted into the highly reactive hydroxyl radical (${^{\cdot}}OH$). Alternatively, hydrogen peroxide may be converted into water by the enzymes catalase or glutathione peroxidase. In the glutathione peroxidase reaction glutathione is oxidized to glutathione disulfide, which can be converted back to glutathione by glutathione reductase in an NADPH-consuming process.

  • PDF

Rheological Characterization of Hydrogen Peroxide Gel Propellant

  • Jyoti, B.V.S.;Baek, Seung Wook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.199-204
    • /
    • 2014
  • An experimental investigation on the rheological behavior of gelled hydrogen peroxide at different ambient temperature (283.15, 293.15 and 303.15 K) was carried out in this study. The gel propellant was rheologically characterized using a rheometer, in the shear rate ranges of 1 to $20s^{-1}$, and 1 to $1000s^{-1}$. Hydrogen peroxide gel was found to be thixotropic in nature. The apparent viscosity value with some yield stress (in-case of shear rate 1 to $20s^{-1}$) drastically fell with the shear rate. In the case of the shear rate range of 1 to $20s^{-1}$, the apparent viscosity and yield stress of gel were significantly reduced at higher ambient temperatures. In the case of the shear rate range of 1 to $1000s^{-1}$, no significant effect of varying the ambient temperature on the gel apparent viscosity was observed. The up and down shear rate curves for hydrogen peroxide gel formed a hysteresis loop that showed no significant change with variation in temperature for both the 1 to $20s^{-1}$ and the 1 to $1000s^{-1}$ shear rate ranges. No significant change in the thixotropic index of gel was observed for different ambient temperatures, for both low and high shear rates. The gel in the 1 to $20s^{-1}$ shear rate range did not lead to a complete breakdown of gel structure, in comparison to that in the 1 to $1000s^{-1}$ shear rate range.

$H_2$ $O_2$ Resistance of Escherichia coli That Expresses Acetyl Xylan Esterase of Streptomyces coelicolor A3(2) (Streptomyces coelicolor A3(2)의 Acetyl Xylan Esterase를 발현하는 Escherichia coli의 과산화수소 저항성)

  • Kim Jae-heon;Choi Won-ill;Youn Seock-won;Jung Sang Oun;Oh Chung-Hun
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.232-236
    • /
    • 2004
  • We investigated hydrogen peroxide resistance of Escherichia coli possessing acetyl xylan esterase(AxeA) of Streptomyces coelicolor A3(2). The induction of AxeA production by isopropyl-$\beta$-thiogalactoside was confirmed by SDS-polyacrylamide gel electrophoresis. The differences in growth between induced and non-induced E. coli were determined by the changes in optical density of cultures after hydrogen peroxide treatment The lethal effect of hydrogen peroxide was observed for non-induced cultures at all concentrations tested in this study (lmM, 2.5mM and 5mM). However, cultures induced for AxeA production resisted the lethal effect, except at 5mM where cells were killed irrespective of the AxeA production. The axeA induction increased survival against 1.5mM hydrogen peroxide from 59% to 74%. In addition, AxeA producing E. coli showed increased survival at $45^{\circ}C$, near maximum growth temperature. Therefore, it was concluded that AxeA conferred a cross-resistance upon the bacterium against both oxidative- and heat stress.

Oxidative Modification of Neurofilament-L by Copper-catalyzed Reaction

  • Kim, Nam-Hoon;Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.36 no.5
    • /
    • pp.488-492
    • /
    • 2003
  • Neurofilament-L (NF-L) is a major element of neuronal cytoskeletons and known to be important for neuronal survival in vivo. Since oxidative stress might play a critical role in the pathogenesis of neurodegenerative diseases, we investigated the role of copper and peroxide in the modification of NF-L. When disassembled NF-L was incubated with copper ion and hydrogen peroxide, then the aggregation of protein was proportional to copper and hydrogen peroxide concentrations. Dityrosine crosslink formation was obtained in copper-mediated NF-L aggregates. The copper-mediated modification of NF-L was significantly inhibited by thiol antioxidants, N-acetylcysteine, glutathione, and thiourea. A thioflavin-T binding assay was performed to determine whether the copper/$H_2O_2$ system-induced in vitro aggregation of NF-L displays amyloid-like characteristics. The aggregate of NF-L displayed thioflavin T reactivity, which was reminiscent of amyloid. This study suggests that copper-mediated NF-L modification might be closely related to oxidative reactions which may play a critical role in neurodegenerative diseases.

Nanoscopic Morphological Changes in Yeast Cell Surfaces Caused by Oxidative Stress: An Atomic Force Microscopic Study

  • Canetta, Elisabetta;Walker, Graeme M.;Adya, Ashok K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.547-555
    • /
    • 2009
  • Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schizo pombe.

Significance of $p27^{kip1}$ as potential biomarker for intracellular oxidative status

  • Quintos, Lesley;Lee, In-Ae;Kim, Hyo-Jung;Lim, Ji-Sun;Park, Ji-A;Sung, Mi-Kyung;Seo, Young-Rok;Kim, Jong-Sang
    • Nutrition Research and Practice
    • /
    • v.4 no.5
    • /
    • pp.351-355
    • /
    • 2010
  • Our previous proteomic study demonstrated that oxidative stress and antioxidant delphinidin regulated the cellular level of $p27^{kip1}$ (referred to as p27) as well as some heat shock proteins in human colon cancer HT 29 cells. Current study was conducted to validate and confirm the regulation of these proteins using both in vitro and in vivo systems. The level of p27 was decreased by hydrogen peroxide in a dose-dependent manner in human colon carcinoma HCT 116 (p53-positive) cells while it was increased upon exposure to hydrogen peroxide in HT 29 (p53-negative) cells. However, high concentration of hydrogen peroxide (100 ${\mu}M)$ downregulated p27 in both cell lines, but delphindin, one of antioxidative anthocyanins, enhanced the level of p27 suppressed by 100 ${\mu}M$ hydrogen peroxide. ICR mice were injected with varying concentrations of hydrogen peroxide, delphinidin and both. Western blot analysis for the mouse large intestinal tissue showed that the expression of p27 was upregulated by 25 mg/kg BW hydrogen peroxide. To investigate the association of p27 regulation with hypoxia-inducible factor 1-beta (HIF-$1{\beta}$), the level of p27 was analyzed in wild-type mouse hepatoma hepa1c1c7 and Aryl Hydrocarbon Nuclear Translocator (arnt, HIF-$1{\beta}$)-defective mutant BPRc1 cells in the absence and presence of hydrogen peroxide and delphinidin. While the level of p27 was responsive to hydrogen peroxide and delphinidin, it remained unchanged in BPRc1, suggesting that the regulation of p27 requires functional HIF-$1{\beta}$. We also found that hydrogen peroxide and delphinidin affected PI3K/Akt/mTOR signaling pathway which is one of upstream regulators of HIFs. In conclusion, hydrogen peroxide and antioxidant delphinidin seem to regulate intracellular level of p27 through regulating HIF-1 level which is, in turn, governed by its upstream regulators comprising of PI3K/Akt/mTOR signaling pathway. The results should also encourage further study for the potential of p27 as a biomarker for intracellular oxidative or antioxidant status.

Catalase, Glutathione S-Transferase and Thioltransferase Respond Differently to Oxidative Stress in Schizosaccharomyces pombe

  • Cho, Young-Wook;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.33 no.4
    • /
    • pp.344-348
    • /
    • 2000
  • The logarithmically growing Schizosaccharomyces pombe cells were subjected to high heat ($40^{\circ}C$), hydrogen peroxide, and heavy metals such as mercuric chloride and cadmium chloride. Then, the stress responses of catalase, glutathione S-transferase and thioltransferase were investigated. The high heat and cadmium chloride enhanced the catalase activity. The glutathione S-transferase activity of S. pombe cells was increased after treatments with heavy metals. The thioltransferase activity of S. pombe cells was completely abolished by mercuric chloride. Hydrogen peroxide caused no effect on the activities of glutathione S-transferase and thioltransferase. These results suggest that the response of S. pombe cells against oxidative stress is very complicated.

  • PDF