Browse > Article
http://dx.doi.org/10.5139/IJASS.2014.15.2.199

Rheological Characterization of Hydrogen Peroxide Gel Propellant  

Jyoti, B.V.S. (Division of Aerospace Engineering, School of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Baek, Seung Wook (Division of Aerospace Engineering, School of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
International Journal of Aeronautical and Space Sciences / v.15, no.2, 2014 , pp. 199-204 More about this Journal
Abstract
An experimental investigation on the rheological behavior of gelled hydrogen peroxide at different ambient temperature (283.15, 293.15 and 303.15 K) was carried out in this study. The gel propellant was rheologically characterized using a rheometer, in the shear rate ranges of 1 to $20s^{-1}$, and 1 to $1000s^{-1}$. Hydrogen peroxide gel was found to be thixotropic in nature. The apparent viscosity value with some yield stress (in-case of shear rate 1 to $20s^{-1}$) drastically fell with the shear rate. In the case of the shear rate range of 1 to $20s^{-1}$, the apparent viscosity and yield stress of gel were significantly reduced at higher ambient temperatures. In the case of the shear rate range of 1 to $1000s^{-1}$, no significant effect of varying the ambient temperature on the gel apparent viscosity was observed. The up and down shear rate curves for hydrogen peroxide gel formed a hysteresis loop that showed no significant change with variation in temperature for both the 1 to $20s^{-1}$ and the 1 to $1000s^{-1}$ shear rate ranges. No significant change in the thixotropic index of gel was observed for different ambient temperatures, for both low and high shear rates. The gel in the 1 to $20s^{-1}$ shear rate range did not lead to a complete breakdown of gel structure, in comparison to that in the 1 to $1000s^{-1}$ shear rate range.
Keywords
hydrogen peroxide; gel; shear thinning; thixotropy; rheological property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Teipel Ulrich, and Forter Barth Ulrich., "Rheological Behavior of Nitromethane Gelled with Nanoparticles", J Propul Power, Vol. 21, 2005, pp. 40-43.   DOI   ScienceOn
2 Natan, B., and Rahimi, S., "The Status of Gel Propellants in Year 2000", International Journal of Energetic Materials and Chemical Propulsion, Vol. 5, 2002, pp. 172-194.   DOI
3 Shai Rahimi, and Arie Peretz., "On Shear Rheology of Gel Propellants", Propellants, Explosives, Pyrotechnics, Vol. 32, 2007, pp. 165-174.   DOI   ScienceOn
4 Shai Rahimi, Arie Peretz, and Benveniste Natan., "Rheological Matching of Gel Propellants", Journal of Propulsion and Power, Vol. 26, 2010, pp. 376-378.   DOI   ScienceOn
5 Srinivasa, R., and Raghavan., "Rheology of Silica Dispersions in Organic Liquids: New Evidence for Solvation Forces Dictated by Hydrogen Bonding", Langmuir, Vol. 16, 2000, pp. 7920-7930.   DOI   ScienceOn
6 Walls, H.J., Brett Caines, S., Angelica M. Sanchez, and Saad A. Khan., "Yield Stress and Wall Slip Phenomena in Colloidal Silica Gels", J. Rheol., Vol. 47, 2003, pp. 847-868.   DOI   ScienceOn
7 Howard, A. Barnes., "Thixotropy - a review", J. Non- Newtonian Fluid Mech, Vol. 70, 1997, pp. 1-33.   DOI   ScienceOn
8 Munjal, N.L., Gupta, B.L., and Varma, M., "Preparative and Mechanistic Studies on Unsymmetrical Dimethyl Hydrazine-Red Fuming Nitric Acid Liquid Propellant Gels", Propellants, Explosives, Pyrotechnics, Vol. 10, 1985, pp. 111-117.   DOI   ScienceOn
9 Gupta, B.L., Varma, M., and Munjal, N.L., "Rheological Studies on Virgin and Metallized Unsymmetrical Dimethyl Hydrazine Gelled Systems", Propellants, Explosives, Pyrotechnics, Vol. 11, 1986, pp. 45-52.   DOI   ScienceOn
10 Varma, M., Gupta, B.L., and Pandey, M., "Formulation and Storage Studies on Hydrazine-Based Gelled Propellants", Defence Science Journal, Vol. 46, 1996, pp. 435-442.   DOI