• Title/Summary/Keyword: hydrogen peroxide$(H_2O_2)$

Search Result 925, Processing Time 0.027 seconds

Antioxidative Effects of White Ginseng and Red Ginseng on Liver of High Fat Diet-treated Mice (고지방식으로 생육한 생쥐간에서 백삼과 홍삼 추출물의 항산화 효과)

  • Jeon, Bo-Hyun;Seong, Geum-Su;Chun, Seung-Gi;Sung, Jong-Hwan;Chang, Che-Chul
    • Journal of Ginseng Research
    • /
    • v.29 no.3
    • /
    • pp.138-144
    • /
    • 2005
  • This study was to examine antioxidative effects of ginseng extracts on liver of high fat diet-treated mice. ICR male mice were given high fat diet with red ginseng or white ginseng extracts (500, 1500, 3000 mg/kg/day, orally) for 4 weeks. We also Investigated the relationship between lipid peroxidation and ginseng extracts on the oxidative stress. We measured the levels of malondialdehyde (MDA, a marker of lipid peroxidation), hydrogen peroxide, superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione (GSH) in liver tissue. The activities of SOD was generally low in all ginseng extract groups. But the activity of GPx was high in all ginseng extract groups. The hydrogen peroxide contents were similar in almost all groups. The level of GSH was higher in all ginseng extract group in high fat diet (FD) group. The levels of MDA (the end product of lipid peroxidation) were lower in all ginseng extract groups than in FD group. These results that the antioxidant effects of red ginseng and white ginseng extracts prevent oxidative damage by antioxidant effects involving SOD, GPx and increasing the ability of the body to synthesize endogenous antioxidants. It was concluded that ginseng can protect against oxidative stress by high fat diet through its antioxidant properties.

The α-Effect and Mechanism of Reactions of Y-Substituted Phenyl Benzenesulfonates with Hydrogen Peroxide Ion

  • Im, Li-Ra;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2393-2397
    • /
    • 2009
  • Second-order rate constants ($k_{HOO}$‒) have been measured spectrophotometrically for nucleophilic substitution reactions of Y-substituted phenyl benzenesulfonates (1a-g) with $HOO^-$ ion in $H_2O$ at $25.0\;{\pm}\;0.1\;{^{\circ}C}$. The Br$\phi$nsted-type plot is linear with ${\beta}_{lg}$ = ‒0.73. The Hammett plot correlated with with ${\sigma}^-$ constants results in much better linearity than ${\sigma}^o$ constants, indicating that expulsion of the leaving group occurs in the rate-determining step (RDS) either in a stepwise mechanism or in a concerted pathway. However, a stepwise mechanism in which departure of the leaving group occurs in the RDS has been excluded since $HOO^-$ ion is more basic and a poorer leaving group than the leaving Y-substituted phenoxide ions. Thus, the reactions of 1a-g with $HOO^-$ ion have been concluded to proceed through a concerted mechanism. The $\alpha$-nucleophile $HOO^-$ ion is more reactive than its reference nucleophile $OH^-$ ion although the former is ca. 4 p$K_a$ units less basic than the latter (i.e., the $\alpha$-effect). TS stabilization through intramolecular H-bonding interaction has been suggested to be irresponsible for the $\alpha$-effect shown by $HOO^-$ ion, since the magnitude of the $\alpha$-effect is independent of the electronic nature of substituent Y in the leaving group. GS destabilization through desolvation of $HOO^-$ ion has been concluded to be responsible for the $\alpha$-effect found in the this study.

Antimicrobial Effects of Lactic Acid Bacteria Isolated from Tibetan Yogurt against Foodborne Pathogenic Bacteria (티베트 요거트에서 분리한 유산균의 병원성 세균 항균 효과 연구)

  • Gho, Ju Young;Lee, Jiyeon;Choi, Hanhee;Park, Sun Woo;Kang, Seok-Seong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.121-127
    • /
    • 2021
  • Yogurt is produced by bacterial fermentation of milk and contains lactic acid bacteria (LAB), which produce various metabolites such as organic acid, hydrogen peroxide, and bacteriocin. This study aimed to investigate cell-free supernatants (CFS) of LAB isolated from Tibetan yogurt. CFS (TY1, TY2, TY3, TY4, TY5, TY6, and TY7) from selected strains of LAB were co-incubated with four different foodborne pathogenic bacteria, namely E. coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, and Staphylococcus aureus. Inhibition of foodborne pathogenic bacterial growth was not affected in the presence of CFS (pH 6.5). In contrast, CFS without neutralization completely inhibited the growth of the bacteria. Furthermore, when the concentration of CFS (without neutralization) was changed to 1:4 and 1:8, a difference in inhibition was observed between Gram-positive and Gram-negative bacteria. CFS more effectively inhibited the growth of Gram-negative E. coli O157:H7 and S. Typhimurium than Gram-positive L. monocytogenes and S. aureus. These results suggest that organic acids in LAB may inhibit the growth of foodborne pathogenic bacteria, particularly Gram-negative bacteria.

Characterization of Antioxidant Potential of a Methanolic Extract and Its Fractions of Highbush Blueberry (Vaccinium corymbosum L.)

  • Senevirathne Mahinda;Jeon, You-Jin;Ha, Jin-Hwan;Lee, Chi-Ho;Cho, Somi-K.;Kim, Soo-Hyun
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.4
    • /
    • pp.316-325
    • /
    • 2005
  • The antioxidant potential of a $75\%$ methanolic extract of highbush blueberry (Vaccinium corymbosum L.) and its different fractions was investigated using different reactive oxygen species (ROS), nitric oxide (NO.), metal chelating and lipid peroxidation assays. Methylene chloride and $75\%$ methanol fractions showed equally high activities $(IC_{50} 0.010 mg/mL)$ for hydroxyl radical (HO) scavenging. Higher hydrogen peroxide $(H_2O_2)$ scavenging values were reported for the ethyl acetate and methylene chloride fractions and their $IC_{50}$ values were 0.20 and 0.15 mg/mL, respectively. Nitric oxide (NO.) and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activities were higher in ethyl acetate and methylene chloride fractions. Chloroform and water fractions showed higher activities in superoxide $(O_2.)$ scavenging. All fractions showed strong metal chelating capacities compared with the commercial antioxidants tested. The $0.1\%$ ethyl acetate fraction showed notable capacity to suppress lipid peroxidation in both fish oil and linoleic acid. Phenolic content was measured in all the fractions and methanolic extract. Among the fractions, ethyl acetate fraction showed the highest phenolic content.

Studies on Photoprotection of Walnut Veneer Exposed to UV Light (자외선 노출에 의한 Walnut 베니어의 광 변색 방지 연구)

  • Park, Se-Yeong;Hong, Chang-Young;Kim, Seon-Hong;Choi, June-Ho;Lee, Hyo-Jin;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.221-230
    • /
    • 2018
  • The purpose of this study was to evaluate the effect of several chemical treatments to prevent photodegradation of wood veneer by external UV (Ultraviolet) light. Of woods, walnut veneer is selected as a raw material for this study since it is known as a luxurious wood with dark color giving an esthetic effect. Alcohol-benzene, hydrogen peroxide ($H_2O_2$) and sodium hypochlorite (NaClO) solution were used for investigate the effect on color stabilization. Despite the removal of the extractive compounds, which is known as a discoloration component, a significant color change of walnut wood veneer was observed. Meanwhile, the veneers treated by 20 and 30% $H_2O_2$ solution at $75^{\circ}C$ for 1 h also showed the no positive effect of color stability exposed to UV light although they have a bleaching effect on wood veneer. Besides, it was difficult to maintain the original color of walnut veneer due to the elution of the extractive compounds. On the other hands, the veneer treated by NaClO solution indicated the good performance on color stability despite of the intensive UV light test. However, when the concentration exceeds 3%, surface roughness and fiber damage occurred simultaneously. Therefore, the walnut species should be treated with proper concentration when sodium hypochlorite is applied to the veneer.

Anti-inflammatory and Cellular Protective Effects on Hydrogen Peroxide-induced Cytotoxicity of Grasshopper Extracts (메뚜기류 추출물의 염증 조절작용 및 세포사멸보호 효과)

  • Park, Ja-Young;Heo, Jin-Chul;Woo, Sang-Uk;Yun, Chi-Young;Kang, Seok-Woo;Hwang, Jae-Sam;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.13 no.6
    • /
    • pp.796-802
    • /
    • 2006
  • In order to investigate the anti-inflammatory and cellular protective effects of Atractomorpha lata Motschulsky, Oxya japonica japonica Thunberg and Stethophyma magister Rehn, we first examined hydrogen peroxide-induced cytotoxicity in SH-SY5Y cells as well as antioxidant assays including DPPH and FRAP assays. We found that water, ethanol and methanol extracts of Oxya japonica japonica Thunberg and Stethophyma magister Rehn had potentials to anti-oxidant activity and especially water extract of Oxya japonica japonica Thunberg exhibited the most potent protective effects against $H-2O_2$-induced cytotoxicity in SH-SY5Y cells by MTT assay. Taken Together, these findings indicate that water extract of Oxya japonica japonica Thunberg could be useful insect resources for agrobiotechnological or oriental medicinal purposes.

Bioactive Compounds and Antioxidant Activity of Jeju Camellia Mistletoe (Korthalsella japonica Engl.) (제주 동백나무 겨우살이의 용매별 기능성 성분 및 항산화 작용)

  • Kang, Da Hee;Park, Eun Mi;Kim, Ji Hye;Yang, Jung Woo;Kim, Jung Hyun;Kim, Min Young
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1074-1081
    • /
    • 2016
  • Mistletoes are hemi-parasitic plant growing on different host tree and shrubs. They are traditionally used in folkloric medicine for the treatment of diarrhea, cough, diabetes, hypertension, cancer and skin infection. The purpose of this study was to determine the contents of phenolics and antioxidant activity of 70% ethanol, 100% methanol and hot water extracts of Jeju camellia mistletoe (Korthalsella japonica Engl.). Ethanol was most effective in extracting total phenols (7,427 mg gallic acid equivalent (GAE)/100 g) and flavonoid (1,777 mg rutin equivalent (RE)/100 g). The free radical scavenging activity, 1,1-diphenyl-2-picryl hydrazyl (DPPH) (EC50 = 7.8 mg/ml) and hydrogen peroxide (H2O2) (EC50 = 1.4 mg/ml), and the capacity for chelating metal ions (EC50 = 8.0 mg/ml) and reducing power (EC50 = 14.9 mg/ml) of the samples also higher in ethanolic extracts. The strong correlation (r2 = −0.996~−0.881) between antioxidant capacities and the phenolic contents implied that phenolic compounds are a major contributor to the antioxidant activity of the ethanolic extracts of Jeju camellia mistletoe. As conclusions, Jeju camellia mistletoe contains bioactive substances with a potential for reducing the physiological as well as oxidative stress and this could explain the suggested cancer preventive effect of these plants as well as their protective role on other major diseases.

Study of Behavior Characteristics of Impinging Spray of Emulsified Fuel (에멀젼연료 충돌분무의 거동특성에 관한 연구)

  • Yeom, Jeong Kuk;Kim, Hak Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.909-916
    • /
    • 2015
  • In this study, to investigate the effect of spray behavior characteristics, we induce the mixing ratio of emulsified fuel using impinging spray. We formulate the emulsified fuel by mixing diesel and hydrogen peroxide($H_2O_2$). We set the temperature of the heating plate to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$, and set the injection pressures to 400, 600, 800, and 1000bar. The surfactants for the emulsified fuel mixture, which were mixed span80 and tween80 was mixed as 9:1, were fixed to 3% of the total volume of the emulsified fuel. We set the mixing ratio of $H_2O_2$ in the emulsified fuel as emulsified fuel(EF)0, EF2, EF12, and EF22. Further, we visualize the evaporation impinging spray using the Schlieren method. Based on the results of this study, we found that a higher temperature and injection pressure of the heating plate impingement led to the active diffusion of the fuel vapor, which promoted emulsified fuel evaporation. When the emulsified fuel is utilized in an actual engine, because of the temperature-drop effect of the combustion chamber, which is due to the evaporation of $H_2O_2$ in fuel and faster mixture formation is expected to decrease the engine emissions.

THE EFFECT OF STREPTOCOCCUS ORALIS ON THE FORMATION OF ARTIFICIAL PLAQUE (Streptococcus oralis의 인공치태 억제효과에 대한 연구)

  • Kim, Seon-Mi;Yang, Kyu-Ho;Chung, Sung-Su;Oh, Jong-Suk
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.1
    • /
    • pp.77-87
    • /
    • 1999
  • This study was performed to evaluate the effect of Streptococcus oralis on the formation of artificial plaque and the replication of Streptococcus mutans. S. mutans was incubated alone and in the combination with S. oralis in the beaker with wires. The produced plaque weight and the viable cells of S. mutans were compared between those cultures. Various factors were studied about the effect on the formation of plaque and the replication of S. mutans. Followings are the results. 1. Lower amount of plaque was produced and fewer cells of S. mutans were replicated at the mixed culture of S. mmutans and S. oralis than S. mutans alone. 2. When 10 mM glucose was added, the plaque weight was increased in the culture of S. mutans alone. But in the mixed culture of S. mutans and S. oralis, the plaque weight was not increased when 10 mM of glucose was added. 3. When 10 mM fructose was added, the plaque weight was increased in the culture of S. mutans alone or combined S. mutans and S. oralis. 4. In the mixed culture of S. mutans and S. oralis with different concentration, the more S. oralis exist, the less plaque and the fewer viable cells of S. mutans were observed. 5. The plaque weight and the viable cells of S. mutans were more decreased in the mixed culture of S. mutans and S. oralis than S. mutans alone after 12 hours. 6. When Staphylococcus epidermidis consuming hydrogen peroxide was added to the mixed culture of S. mutans and S. oralis, the plaque weight and the viable cells of S. mutans were increased. These results indicate that S. oralis inhibited the formation of plaque and the replication of S. mutans, and this may result from the formation of hydrogen peroxide S. oralis.

  • PDF

Antioxidant Activities and Hepato-protective Effects of Stauntonia hexaphylla Fruit Extract Against H2O2-induced Oxidative Stress and Acetaminophen-induced Toxicity (멀꿀 열매 추출물의 항산화 활성 및 H2O2로 유도된 산화적 스트레스와 아세트아미노펜 독성 모델에서의 간 보호효과)

  • Lee, Gyuok;Kim, Jaeyong;Kang, Huwan;Bae, Donghyuck;Choi, Chul-yung
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.708-717
    • /
    • 2018
  • The antioxidant activity and protective effects of a hot water extract from the Stauntonia hexaphylla fruit (WESHF) were investigated in vitro and in vivo. The total polyphenol and flavonoid contents of WESHF were $16.13{\pm}0.27mg$ gallic acid equivalent/g and $4.7{\pm}0.80mg$ catechin equivalent/g, respectively. In addition, the DPPH radical-scavenging activity ($SC_{50}$) and the Oxygen Radical Absorbance capacity of WESHF were $63.62{\pm}4.10{\mu}g/ml$ and $90.63{\pm}5.29{\mu}M$ trolox equivalent/g, respectively. The hepatoprotective effect of WESHF against hydrogen peroxide-induced oxidative damage was investigated. $H_2O_2$-induced liver damage on HepG2 cells was prevented by $200{\mu}g/ml$ of WESHF. Furthermore, to investigate the protection mechanism of WESHF on hydrogen peroxide-induced cytotoxicity in HepG2 cells, pre-treatment with $200{\mu}g/ml$ of WESHF significantly attenuated a decrease in the activities of CAT, SOD, GR, and GPx. The hepatoprotective activity of WESHF was evaluated in an experimental model of hepatic damage induced by acetaminophen (APAP). The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly decreased in the livers of mice treated with 200 mg/kg of WESHF compared to the APAP-treated group. The lipid peroxidation level, which increased after APAP administration, was significantly reduced in the WESHF group. In addition, histological examinations of the liver showed the same protective effect of WESHF treatment. Based on these findings, it is suggested that WESHF has potent hepatoprotective effects, and the mechanism that causes this type of protection could be related to antioxidant pathways.