• 제목/요약/키워드: hydrogen nanoparticles

검색결과 167건 처리시간 0.022초

Synthesis of Core@shell Structured CuFeS2@TiO2 Magnetic Nanomaterial and Its Application for Hydrogen Production by Methanol Aqueous Solution Photosplitting

  • Kang, Sora;Kwak, Byeong Sub;Park, Minkyu;Jeong, Kyung Mi;Park, Sun-Min;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2813-2817
    • /
    • 2014
  • A new magnetic semiconductor material was synthesized to enable separation after a liquid-type photocatalysis process. Core@shell-structured $CuFeS_2@TiO_2$ magnetic nanoparticles were prepared by a combination of solvothermal and wet-impregnation methods for photocatalysis applications. The materials obtained were characterized using X-ray diffraction, transmission electron microscopy, ultraviolet-visible, photoluminescence spectroscopy, Brunauer-Emmett-Teller surface area measurements, and cyclic voltammetry. This study confirmed that the light absorption of $CuFeS_2$ was shifted significantly to the visible wavelength compared to pure $TiO_2$. Moreover, the resulting hydrogen production from the photo-splitting methanol/water solution after 10 hours was more than 4 times on the core@shell structured $CuFeS_2@TiO_2$ nanocatalyst than on either pure $TiO_2$ or $CuFeS_2$.

Chitosan-Cu-salen/Carbon Nano-Composite Based Electrode for the Enzyme-less Electrochemical Sensing of Hydrogen Peroxide

  • Jirimali, Harishchandra Digambar;Saravanakumar, Duraisamy;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권3호
    • /
    • pp.169-175
    • /
    • 2018
  • Cu-Salen complex was prepared and attached into chitosan (Cs) polymer backbone. Nanocomposite of the synthesized polymer was prepared with functionalized carbon nano-particles (Cs-Cu-sal/C) to modify the electrode surface. The surface morphology of (Cs-Cu-sal/C) nanocomposite film showed a homogeneous distribution of carbon nanoparticles within the polymeric matrix. The cyclic voltammogram of the modified electrode exhibited a redox behavior at -0.1 V vs. Ag/AgCl (3 M KCl) in 0.1 M PB (pH 7) and showed an excellent hydrogen peroxide reduction activity. The Cs-Cu-sal/C electrode displays a linear response from $5{\times}10^{-6}$ to $5{\times}10^{-4}M$, with a correlation coefficient of 0.993 and detection limit of $0.9{\mu}M$ (at S/N = 3). The sensitivity of the electrode was found to be $0.356{\mu}A\;{\mu}M^{-1}\;cm^{-2}$.

활성탄 담지 몰리브덴 촉매를 이용한 합성가스 직접 메탄화 반응 (Direct Methanation of Syngas over Activated Charcoal Supported Molybdenum Catalyst)

  • 김성수;이승재;박성열;김진걸
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.419-428
    • /
    • 2020
  • The kinetics of direct methanation over activated charcoal-supported molybdenum catalyst at 30 bar was studied in a cylindrical fixed-bed reactor. When the temperature was not higher than 400℃, the CO conversion increased with increasing temperature according to the Arrhenius law of reaction kinetics. While XRD and Raman analysis showed that Mo was present as Mo oxides after reduction or methanation, TEM and XPS analysis showed that Mo2C was formed after methanation depending on the loading of Mo precursor. When the temperature was as high as 500℃, the CO conversion was dependent not only on the Arrhenius law but also on the catalyzed reaction by nanoparticles, which came off from the reactor and thermocouple by metal dusting. These nanoparticles were made of Ni, Fe, Cr and alloy, and attributed to the formation of carbon deposit on the wall of the reactor and on the surface of the thermocouple. The carbon deposit consisted of amorphous and disordered carbon filaments.

수소제조에 관한 박막형 CdS-TiO2 복합 광촉매계의 표면처리 효과 (Effect of Surface Treatment of CdS-TiO2 Composite Photocatalysts with Film Type on Hydrogen Production)

  • 장점석;소원욱;김광제;문상진
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.34-41
    • /
    • 2002
  • CdS and $TiO_2$ nanoparticles were made by the precipitation method and sol-gel method, respectively, and they were mixed mechanically and then treated with the hydrothermal processing. CdS-$TiO_2$ composite particulate films were thus prepared by casting CdS-$TiO_2$ mixed sol onto $SnO_2$ conducting glass and a subsequent heat-treatment at $400^{\circ}C$. Again, the physico-chemical and photoelectrochemical properties of these films were controlled by the surface treatment with $TiCl_4$ aqueous solution. The photocurrents and the hydrogen production rates measured under the present experimental conditions varied in the range of $3.5{\sim}4.5mA/cm^2$ and $0.3{\sim}1.8cc/cm^2$-hr, respectively, and showed the maximum values at the $CdS/[CdS+TiO_2]$ mole ratio of 0.2. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, Probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$ It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.

수소재액화를 위한 자기냉매용 HoN 나노분말 합성 및 자기열량효과 연구 (Study on the Synthesis of HoN Nanoparticles and Magnetocaloric Effect as Magnetic Refrigerant for Hydrogen Re-Liquefaction)

  • 김동수;안종빈;장세훈;정국채;김종우;최철진
    • 한국수소및신에너지학회논문집
    • /
    • 제25권6호
    • /
    • pp.594-601
    • /
    • 2014
  • Rare-earth (RE) nitrides can be used as magnetocaloric materials in low temperature. They exhibit ferromagnetism and have Curie temperature in the region from 6 to 70 K. In this study, Holmium nitride (HoN) nano particles were prepared through plasma arc discharge technique and their magnetocaloric properties were studied. Nitrogen gas ($N_2$) was employed as an active element for arc discharge between two electrodes maintained at a constant current. Also, it played an important role not only as a reducing agent but also as an inevitable source of excited nitrogen molecules and nitrogen ions for the formation of HoN phase. Partial pressure of $N_2$ was systematically varied from 0 to 28,000 Pa in order to obtain single phase of HoN with minimal impurities. Magnetic entropy change (${\Delta}S_m$) was calculated with data set measured by PPMS (Physical Property Measurement System). The as-synthesized HoN particles have shown a magnetic entropy change ${\Delta}S_m$) of 27.5 J/kgK in applied field of 50,000 Oe at 14.2 K thereby demonstrating its ability to be applied as an effective magnetic refrigerant towards the re-liquefaction of hydrogen.

고분자 전해질 다층박막을 이용한 과산화수소 직접제조 반응 중 활성금속 용출 억제 방법 (A Method for Suppression of Active Metal Leaching during the Direct Synthesis of H2O2 by Using Polyelectrolyte Multilayers)

  • 정영민
    • Korean Chemical Engineering Research
    • /
    • 제53권2호
    • /
    • pp.262-268
    • /
    • 2015
  • 본 연구에서는 일반적인 귀금속 담지법과 담체 위에 형성한 고분자 전해질 다층 박막 내에 귀금속을 내포시키는 방법으로 촉매를 제조하고, 과산화수소 직접제조 반응에 적용하여 촉매의 제조 방법이 과산화수소 생산성 및 촉매 수명에 미치는 영향을 조사하였다. 촉매의 활성은 제조 방법에 상관없이 담체의 산세기에 크게 의존하였으며, 사용한 담체들 중 산세기가 가장 강한 HBEA(SAR=25)를 사용한 경우가 활성이 가장 우수하였다. 단순 귀금속 담지 촉매는 고분자 전해질 다층 박막을 도입한 촉매보다 과산화수소 생산성은 우수하였으나, 반응 중 활성 금속인 Pd의 용출로 인해 재사용 횟수가 증가할 때마다 활성이 급격히 감소하였다. 한편, 고분자 전해질 다층 박막의 도입은 산성 담체의 역할을 약화시켜 촉매 활성은 감소하고 과산화수소 분해능은 증가하여 전체적으로 과산화수소의 생산성이 감소되는 결과를 가져왔다. 하지만, 5회에 걸친 재사용 동안에도 촉매 활성이 유지되었으며, 이러한 비약적인 촉매 수명의 향상은 담체 위에 고분자 전해질 다층 박막을 도입하는 것이 반응 중 활성 금속의 용출 억제 측면에서 매우 효과적이라는 것을 시사한다.

Highly Stable Photoluminescent Qunatum Dot Multilayers by Layer-by-Layer Assembly via Nucleophilic Substitution Reaction in Organic Media

  • 윤미선;김영훈;정상혁;백현희;조진한
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.244.2-244.2
    • /
    • 2011
  • We introduce a novel and robust method for the preparation of nanocomposite multilayers, which allows the excellent photoluminescent (PL) properties as well as the accurate control over the composition and dimensions of multilayers. By exchanging the oleic acid stabilizers of CdSe@ZnS quantum dots (QDs) synthesized in organic solvent with 2-bromo-2-methylpropionic acid (BMPA) in the same solvent, these nanoparticles were be alternately deposited by nucleophilic substitution reaction with highly branched poly(amidoamine) dendrimer (PAMA) through layer-by-layer (LbL) assembly process. Our approach does not need to be transformed into the water-dispersible nanoparticles with electrostatic or hydrogen-bonding groups, which can deteriorate their inherent properties, for the built-up of multilayers. The nanocomposite multilayers including QDs exhibited the strong PL properties achieving densely packed surface coverage as well as long-term PL stability under atmospheric conditions in comparison with those of conventional LbL multilayers based on electrostatic interaction. Furthermore, we demonstrate that the flexible multilayer films with optical properties can be easily prepared using nucleophilic substitution reaction between bromo and amino groups in organic media. This robust and tailored method opens a new route for the design of functional film devices based on nanocomposite multilayers.

  • PDF

전구체 농도에 따른 MoO3 나노 분말 합성 및 핵생성 거동 (Synthesis and Nucleation Behavior of MoO3 Nano Particles with Concentration of Precursors)

  • 이세영;권남훈;노재석;이근재
    • 한국분말재료학회지
    • /
    • 제27권5호
    • /
    • pp.394-400
    • /
    • 2020
  • Molybdenum trioxide (MoO3) is used in various applications including sensors, photocatalysts, and batteries owing to its excellent ionic conductivity and thermal properties. It can also be used as a precursor in the hydrogen reduction process to obtain molybdenum metals. Control of the parameters governing the MoO3 synthesis process is extremely important because the size and shape of MoO3 in the reduction process affect the shape, size, and crystallization of Mo metal. In this study, we fabricated MoO3 nanoparticles using a solution combustion synthesis (SCS) method that utilizes an organic additive, thereby controlling their morphology. The nucleation behavior and particle morphology were confirmed using ultraviolet-visible spectroscopy (UV-vis) and field emission scanning electron microscopy (FE-SEM). The concentration of the precursor (ammonium heptamolybdate tetrahydrate) was adjusted to be 0.1, 0.2, and 0.4 M. Depending on this concentration, different nucleation rates were obtained, thereby resulting in different particle morphologies.

폴리(에틸 아크릴레이트-co-t-부틸 아크릴레이트)/ 실리카 나노복합체 특성에 대한 계면 개질의 효과 (Effect of Interfacial Modification on the Characteristics of Poly(ethyl acrylate-co-t-butyl acrylate)/Silica Nanocomposites)

  • 진선욱;한건옥;김형일
    • 폴리머
    • /
    • 제28권6호
    • /
    • pp.487-493
    • /
    • 2004
  • 계면간 상호작용이 약한 폴리(에틸 아크릴레이트-co-t-부틸 아크릴레이트) (PEB) 에멀션 고분자를 사용한 나노복합체 혼합용액에서는 pH변화에 따라 고분자 입자들과 실리카 나노입자들의 분포 형태가 결정되었다. 이러한 나노복합체는 실리카 입자의 응집이 심하였고 불규칙적인 분산성을 나타내었다. 메타아크릴옥시프로필트리메톡시실란 (MPS)를 사용하여 개질한 용액 중합 고분자나 실리카 나노입자를 사용한 나노복합체에서는 계면간 강한 상호작용으로 인하여 실리카 나노입자가 미세하게 분산되었고 코어-쉘 형태학적 특성을 나타냈다. 계면을 MPS로 개질한 나노복합체에서는 강한 수소 결합 상호작용이 존재하는 것을 적외선 분광계로 확인하였다. 강한 계면 상호작용을 갖는 나노복합체는 고분자 사슬의 유리 전이 온도가 증가하였고 ΔC$_{p}$ 는 감소하였으며 열분해 온도는 상승되었다.며 열분해 온도는 상승되었다.

나노 분말 복합체 형성을 통한 PVDF 기반 에너지 하베스팅 소자 성능 향상 기술 동향 (Recent Development in Performance Enhancement of PVDF-Nanopowder Composite-based Energy Harvesting Devices)

  • 최건주;박일규
    • 한국분말재료학회지
    • /
    • 제27권3호
    • /
    • pp.247-255
    • /
    • 2020
  • Recently, interest in technology for eco-friendly energy harvesting has been increasing. Polyvinylidene fluoride (PVDF) is one of the most fascinating materials that has been used in energy harvesting technology as well as micro-filters by utilizing an electrostatic effect. To enhance the performance of the electrostatic effect-based nanogenerator, most studies have focused on enlarging the contact surface area of the pair of materials with different triboelectric series. For this reason, one-dimensional nanofibers have been widely used recently. In order to realize practical energy-harvesting applications, PVDF nanofibers are modified by enlarging their contact surface area, modulating the microstructure of the surface, and maximizing the fraction of the ν-phase by incorporating additives or forming composites with inorganic nanoparticles. Among them, nanocomposite structures incorporating various nanoparticles have been widely investigated to increase the β-phase through strong hydrogen bonding or ion-dipole interactions with -CF2/CH2- of PVDF as well as to enhance the mechanical strength. In this study, we report the recent advances in the nanocomposite structure of PVDF nanofibers and inorganic nanopowders.