DOI QR코드

DOI QR Code

Synthesis and Nucleation Behavior of MoO3 Nano Particles with Concentration of Precursors

전구체 농도에 따른 MoO3 나노 분말 합성 및 핵생성 거동

  • Lee, Seyoung (Department of Energy Engineering, Dankook University) ;
  • Kwon, Namhun (Department of Energy Engineering, Dankook University) ;
  • Roh, Jaeseok (Department of Energy Engineering, Dankook University) ;
  • Lee, Kun-Jae (Department of Energy Engineering, Dankook University)
  • 이세영 (단국대학교 에너지공학과) ;
  • 권남훈 (단국대학교 에너지공학과) ;
  • 노재석 (단국대학교 에너지공학과) ;
  • 이근재 (단국대학교 에너지공학과)
  • Received : 2020.09.23
  • Accepted : 2020.10.21
  • Published : 2020.10.28

Abstract

Molybdenum trioxide (MoO3) is used in various applications including sensors, photocatalysts, and batteries owing to its excellent ionic conductivity and thermal properties. It can also be used as a precursor in the hydrogen reduction process to obtain molybdenum metals. Control of the parameters governing the MoO3 synthesis process is extremely important because the size and shape of MoO3 in the reduction process affect the shape, size, and crystallization of Mo metal. In this study, we fabricated MoO3 nanoparticles using a solution combustion synthesis (SCS) method that utilizes an organic additive, thereby controlling their morphology. The nucleation behavior and particle morphology were confirmed using ultraviolet-visible spectroscopy (UV-vis) and field emission scanning electron microscopy (FE-SEM). The concentration of the precursor (ammonium heptamolybdate tetrahydrate) was adjusted to be 0.1, 0.2, and 0.4 M. Depending on this concentration, different nucleation rates were obtained, thereby resulting in different particle morphologies.

Keywords

References

  1. M. S. Park, Y. D. Kim, J. P. Park and S. D. Choi: Trends Met. Mater. Eng., 21 (2008) 15.
  2. Y. M. Kim, E. P. Kim, S. Lee and J. W. Noh: J. Korean Powder Metall. Inst., 14 (2007) 221. https://doi.org/10.4150/KPMI.2007.14.4.221
  3. B. S. Kim, J. S Sohn, J. C. Lee and H. S. Jeon: Trends Met. Mater. Eng., 21 (2008) 20.
  4. X. Zhao, M. Cao and C. Hu: Mater. Res. Bull., 48 (2013) 2289. https://doi.org/10.1016/j.materresbull.2013.02.050
  5. N. Rajiv Chandar, S. Agilan, R. Thangarasu, N. Muthukumarasamy and R. Ganesh: J. Mater. Sci. Mater. Electron., 10 (2020).
  6. A. Chithambararaj, N. S. Sanjini, S. Velmathib and A. Chandra Bose: Phys. Chem. Chem. Phys., 15 (2013) 14761. https://doi.org/10.1039/c3cp51796a
  7. R. Shoda, E. Kitazume and S. Kaneta: United States, US 7872413 (2011).
  8. M. B. Upama, M. Wright, N. K. Elumalai, M. A. Mahmud, D. Wang, K. H. Chan, C. Xu, F. Haque and A. Uddin: Curr. Appl. Phys., 17 (2017) 298. https://doi.org/10.1016/j.cap.2016.12.010
  9. A. Chithambararaj and A. C. Bose: J. Alloys Compd., 509 (2011) 8105. https://doi.org/10.1016/j.jallcom.2011.05.067
  10. J. H. Lee, I. J. Kim and B. C. Kim: Econ. Environ. Geol., 40 (2007) 503.
  11. M. Saghafi, S. Heshmati-Manesh and A. Ataie: Int. J. Refract. Met. Hard Mater., 30 (2012) 128. https://doi.org/10.1016/j.ijrmhm.2011.07.014
  12. D. Zhao, X. Zhang, H. Huan, X, Dong, H. Zhu, Z. Li, Y. Qi, J. Hu and X. Zeng: Mater. Lett., 256 (2019) 126648. https://doi.org/10.1016/j.matlet.2019.126648
  13. M. Abboudi, H. O. Hassani, F. A. Wadaani, S. Rakass, A. A. Ghamdi and M. Messali: J. Taibah Univ. Sci., 12 (2018) 133. https://doi.org/10.1080/16583655.2018.1451102
  14. H. C. Xuan, Y. Q. Zhang, Y. K. Xu, H. Li, P. D. Han, D. H. Wang and Y. W. Du: Phys. Status Solidi A, 213 (2016) 2468. https://doi.org/10.1002/pssa.201533069
  15. X. W. Lou and H. C. Zeng: Chem. Mater., 14 (2002) 4781. https://doi.org/10.1021/cm0206237
  16. W. S. Kim, H. C. Kim and S. H. Hong: J. Nanopart. Res., 12 (2010) 1889. https://doi.org/10.1007/s11051-009-9751-6
  17. Y. J. Lee, W. T. Nichols, D. G. Kim and Y. D. Kim: J. Phys. D: Appl. Phys., 42 (2009) 115419. https://doi.org/10.1088/0022-3727/42/11/115419
  18. M. Balaji, J. Chandrasekaran and M. Raja: Optik, 127 (2016) 6015. https://doi.org/10.1016/j.ijleo.2016.04.021
  19. L. P. Babu Reddy, H. G. Rajprakash, and Y. T. Ravikiran: AIP Conf. Proc., 2142 (2019) 070022.
  20. D. Parviz, M. Kazemeini and A. M. Rashidi: J. Nanopart. Res., 12 (2010) 1509. https://doi.org/10.1007/s11051-009-9727-6
  21. G. P. Nagabhushana, D. Samrat and G. T. Chandrappa: RSC Adv., 4 (2014) 56784. https://doi.org/10.1039/C4RA05135A
  22. M. D. Ward, J. F. Brazdil and R. K. Grasselli: J. Phys. Chem., 88 (1984) 4210. https://doi.org/10.1021/j150663a004
  23. N. Desai, S. Mali, V. Kondalkar, R. l. Mane, C. Hong and P. Bhosale: J. Nanomed. Nanotechnol., 6 (2015) 1000338.
  24. D. Parviz, M. Kazemeini, A. M. Rashidi and K. J. Jozani: Sci. Iran., 18 (2011) 479. https://doi.org/10.1016/j.scient.2011.05.012
  25. M. Epifani, P. Imperatori, L. Mirenghi, M. Schioppa and P. Siciliano: Chem. Mater., 16 (2004) 5495. https://doi.org/10.1021/cm048997i