Browse > Article

Effect of Interfacial Modification on the Characteristics of Poly(ethyl acrylate-co-t-butyl acrylate)/Silica Nanocomposites  

진선욱 (충남대학교 공업화학과)
한건옥 (충남대학교 공업화학과)
김형일 (충남대학교 공업화학과)
Publication Information
Polymer(Korea) / v.28, no.6, 2004 , pp. 487-493 More about this Journal
Abstract
The distribution of particles, in the mixture of poly(ethyl acrylate-co-t-butyl acrylate) (PEB) emulsion polymer and silica nanoparticles, was determined mainly depending on the pH of the mixture. The weak interfacial interaction was responsible for the severe coagulation of silica particles and the irregular dispersion for these nanocomposites. Methacryloxypropyltrimethoxysilane (MPS) was used to modify both the polymer and the silica. The nanocomposites which were prepared with these modified components had finer dispersion of silica nanoparticles and core-shell morphology due to the strong interfacial interaction. The strong hydrogen bonds were identified for these nanocomposites with FT-IR. The nanocomposites having strong interfacial interaction showed the increased glass transition temperature, the decreased ΔC$_{p}$ , and the increased decomposition temperature of the polymer chains. polymer chains.
Keywords
nanocomposite; interface; modification; silica; core-shell;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 R. Dagani, Chem. Eng. News, 77, 25 (1999)
2 J. C. Kim, G. H. Park, S. J. Suh, Y. K. Lee, S. J. Lee, and J. D. Nam, Polymer (Korea), 26, 367 (2002)
3 Y. Y. Yun, C. Y. Chen, and W. C. Chen, Polymer, 44, 593 (2003)
4 C. R. Lee, K. J. Ihn, and M. S. Gong, Polymer(Korea), 27, 392 (2003)
5 W. Posthumus and R. van der Linde, J. Colloid Interface Sci., 269, 109 (2004)
6 L. J. Kim, H. G. Yoon, S. S. Lee, and J. Kim, Polymer (Korea), 28, 391 (2004)
7 S. J. Park, D. I. Seo, J. R. Lee, and D. S. Kim, Polymer (Korea), 25, 587 (2001)
8 T. H. Mourey, S. M. Miller, J. A. Wesson, T. E. Long, and L. W. Kelts, Macromolecules, 25, 45 (1992)
9 A. Morikawa, H. Yamaguchi, M. Kakimoto, and Y. Imai, Chem. Mater., 6, 913 (1994)
10 B. Pukanszky and E. Fekete, Adv. Polym. Sci., 139, 109 (1999)
11 X. Ji and Q. Hu, Chem. Mater., 15, 3656 (2003)   DOI   ScienceOn
12 H. Sakai and Y. Imamura, Chem. Soc. Japan, 53, 1749 (1980)
13 Z. H. Huang and K. Y. Qiu, Polymer, 38, 521 (1996)
14 J. H. Kang, S. G. Lyu, H. K. Choi, and G. S. Sur, Polymer (Korea), 25, 414 (2001)
15 P. Hajji, L. David, F. Gerard, J. P. Pascault, and G. Vigier, J. Polym. Sci.: Part B; Polym. Phys., 37, 3172 (1999)
16 K. Moller, J. Tamazawa, and W. T. Ford, Chem. Mater., 10, 1841 (1998)
17 M. Q. Zhang, M. Z. Rong, and K. Friedrich, 'Processing and Properties of Nonlayered Nanoparticle Reinforced Thermoplastic Composites', in Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, H. S. Nalwa, Editor, American Scientific Publishers, Stevenson Ranch, Vol 2, p 113 (2003)
18 M. J. Percy, C. Barthet, and J. C. Lobb, Langmuir, 16, 6913 (2000)
19 G. T. Lu and Y. Huang, J. Mater. Sci., 37, 2305 (2002)
20 S. J. Park, K. S. Cho, and M. Zaborski, Polymer (Korea), 26, 445 (2002)
21 E. P. Giannelis, Adv. Mater., 8, 29 (1996)