Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.3.247

Recent Development in Performance Enhancement of PVDF-Nanopowder Composite-based Energy Harvesting Devices  

Choi, Geon-Ju (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.27, no.3, 2020 , pp. 247-255 More about this Journal
Abstract
Recently, interest in technology for eco-friendly energy harvesting has been increasing. Polyvinylidene fluoride (PVDF) is one of the most fascinating materials that has been used in energy harvesting technology as well as micro-filters by utilizing an electrostatic effect. To enhance the performance of the electrostatic effect-based nanogenerator, most studies have focused on enlarging the contact surface area of the pair of materials with different triboelectric series. For this reason, one-dimensional nanofibers have been widely used recently. In order to realize practical energy-harvesting applications, PVDF nanofibers are modified by enlarging their contact surface area, modulating the microstructure of the surface, and maximizing the fraction of the ν-phase by incorporating additives or forming composites with inorganic nanoparticles. Among them, nanocomposite structures incorporating various nanoparticles have been widely investigated to increase the β-phase through strong hydrogen bonding or ion-dipole interactions with -CF2/CH2- of PVDF as well as to enhance the mechanical strength. In this study, we report the recent advances in the nanocomposite structure of PVDF nanofibers and inorganic nanopowders.
Keywords
Nanopowders; Nanocomposites; Polyvinylidene fluoride; Energy harvesting;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Z. L. Wang: Sci. Am., 298 (2008) 82.   DOI
2 S. Chu, Y. Cui and N. Liu: Nat. Mater., 16 (2017) 16.   DOI
3 H. Yoon, H. Ryu and S. Kim: Nano Energy, 51 (2018) 270.   DOI
4 I. Park: J. Korean Powder Metall. Inst., 24 (2017) 102.   DOI
5 F. Fan, Z. Tian and Z. L. Wang: Nano Energy, 1 (2012) 328.   DOI
6 Z. L. Wang: Faraday Discuss., 176 (2015) 447.   DOI
7 D. Zhang, W. Liu, R. Guo, K. Zhou and H. Luo: Adv. Sci., 5 (2018) 1700512.   DOI
8 H. Luo, S. Chen, L. Liu, X. Zhou, C. Ma, W. Liu and D. Zhang: ACS Sustain. Chem. Eng., 7 (2018) 3145
9 Q. Zhang, V. Bharti and G. Kavarnos: Encyclopedia of Smart Materials, (2002).
10 J. Li, S. Chen, W. Liu, R. Fu, S. Tu, Y. Zhao, L. Dong, B. Yan and Y. Gu: J. Phys. Chem. C, 123 (2019) 11378.   DOI
11 K. Shi, B. Sun, X. Huang and P. Jiang: Nano Energy, 52 (2018) 153.   DOI
12 N. Soin, P. Zhao, K. Prashanthi, J. Chen, P. Ding, E. Zhou, T. Shah, S. C. Ray, C. Tsonos and T. Thundat: Nano Energy, 30 (2016) 470.   DOI
13 J. Im and I. Park: ACS Appl. Mater. Interfaces, 10 (2018) 25660.   DOI
14 M. M. Alam, A. Sultana and D. Mandal: ACS Appl. Energy Mater., 1 (2018) 3103.   DOI
15 H. Yu, T. Huang, M. Lu, M. Mao, Q. Zhang and H. Wang: Nanotechnology, 24 (2013) 405401.   DOI
16 G. Choi, S. Baek, S. Lee, F. Khan, J. H. Kim and I. Park: J. Alloys Compd., 797 (2019) 945.   DOI
17 H. Kim and I. Park: J. Phys. Chem. Solids, 117 (2018) 188.   DOI
18 S. Cheon, H. Kang, H. Kim, Y. Son, J. Y. Lee, H. Shin, S. Kim and J. H. Cho: Adv. Funct. Mater., 28 (2018) 1703778.   DOI
19 J. Fang, H. Niu, H. Wang, X. Wang and T. Lin: Energy Environ. Sci., 6 (2013) 2196.   DOI
20 L. Li, G. Wu, G. Yang, J. Peng, J. Zhao and J. Zhu: Nanoscale, 5 (2013) 4015.   DOI
21 L. Tang, R. Ji, X. Li, K. S. Teng and S. P. Lau: J. Mater. Chem. C, 1 (2013) 4908.   DOI
22 P. Adhikary, A. Biswas and D. Mandal: Nanotechnology, 27 (2016) 495501.   DOI
23 C. Harito, R. Porras, D. V. Bavykin and F. C. Walsh: J. Appl. Polym. Sci., 134 (2017).