• Title/Summary/Keyword: hydrogen generation

Search Result 805, Processing Time 0.038 seconds

Effect of Fermented Epimedii Herba Extract on the Immuno modulating Activity (음양곽(淫羊藿) 발효 추출물이 면역활성에 미치는 영향)

  • Jeong, Hyung-Min;Han, Hyo-Sang;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.111-117
    • /
    • 2013
  • Objectives : This research aimed at studying the immuno modulating activity of Fermented Epimedii Herba (EHS). Method : The impacts on the cell viability, hydrogen peroxide and nitric oxide (NO) generation in cells, and cytokines such as tumor necrosis factor-alpha (TNF-${\alpha}$), interleukin (IL)-6, IL-$1{\beta}$, monocyte chemoattractant protein-1 (MCP-1) level have been measured by using Raw 264.7 cells with the specimen EHS as the fermented extract of Epimedii Herba with Saccharomyces cerevisiae STV89. Result : As a result of MTT assay to confirm the cytotoxicity of extracts from fermented Epimedii Herba, the toxicity was not excessively induced in Raw 264.7 cells when EHS were processed by concentration. EHS increased hydrogen peroxide generation in Raw 264.7 cells. EHS suppressed NO generation in Raw 264.7 cells while they significantly suppressed the increase of NO generation induced by LPS in macrophage. EHS significantly decreased the generation amount of TNF-${\alpha}$ and IL-6 induced by LPS in Raw 264.7 cells at $25{\mu}g/mL$ or more. Conclusion : It appeared that the fermented extract of Epimedii Herba manufactured from Epimedii Herba significantly has the immuno modulating acitivity as it did not excessively trigger cytotoxicity to Raw 264.7 cells, increased hydrogen peroxide generation in Raw 264.7 cells, decreased NO generation in macrophage, and especially, suppressed both TNF-${\alpha}$ and IL-6 generation in macrophage induced by LPS.

Resistant Activity to Hydrogen Peroxide of Lactobacillus spp., Bifidobacterium spp., Bacillus coagulans and Hydrogen Peroxide Generation Capability of Lactobacillus spp. (Lactobacillus spp., Bifidobacterium spp. 및 Bacillus coagulans의 과산화수소 저항성과 과산화수소 생성 능력)

  • Lee, Jong-Hyeok;Yoon, Yeong-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.107-112
    • /
    • 2004
  • Studies on the resistance of Lactobacillus ssp., Bifidobacterium spp. and Bacillus coagulans to hydrogen peroxide were conducted by determination of the viable cells after the test cells in 2mM hydrogen peroxide solution for a predetermined time; L. acidophilus CU4111 and L. casei CU4114 were most resistant to the hydrogen peroxide among the fifteen test lactobacilli strains, whereas L. brevis Cu4206 was the strain which was the most susceptible to hydrogen peroxide. Bifidobacterium longum Cu4131 was one of the resistant strains. A prominant tendency found out that Bacillus coagulans possessed a strong resistance to hydrogen peroxide. The results of level of hydrogen peroxide determination in the cell extracts showed all the test strains contained hydrogen peroxide in the cytoplasm, the amount varied depending on the strain and species of lactic acid bacteria. Bifidobacterium bifidum CU 4134 and L. casei CU 4114 were potent hydrogen peroxide producer strain.

  • PDF

The Technology Development and Substantiation of Small Hydrogen Powered Vessel (소형 수소추진선박 기술 개발 및 실증 )

  • JAEWAN LIM;SEJUN LEE;SANGJIN YOON;OCKTAECK LIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.555-561
    • /
    • 2023
  • In this study, we proposed a standard model for the design, construction and demonstration of the technology development and substantiation of small hydrogen powered vessel in order to respond to the alternative fuel-using vessel market that requires the use of low-carbon/carbon-free fuel as a greenhouse gas reduction measure. The hydrogen fuel cell-based electric propulsion system developed through this is optimized through performance and durability tests on the land-based test site (LBTS), and the electric propulsion system applied to this result is mounted on a small hydrogen propulsion vessel and operated. Simultaneously, through the digital twin technology between the LBTS and the hydrogen-propelled vessel on the sea, the technology that can predict and diagnose the problems that can occur in the electric propulsion system of the vessel is applied to carry out the empirical study of the hydrogen-propelled vessel. In addition, we propose a commercialization model by analyzing the economic feasibility of the demonstration vessel.

Self-sustainable Operation of a 1kW class SOFC System (1kW급 고체산화물 연료전지 발전시스템 자열운전)

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Young-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 single cells and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen after pre-treatment process, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water.

  • PDF

The co-effect of $TiO_2$, Cu and Ni Powders for Enhancing the Hydrogen Generation Efficiency using Plasma Technology (플라즈마 반응기의 수소발생에 미치는 $TiO_2$, Cu, Ni 촉매제 영향)

  • Park, Jae-Yoon;Kim, Jong-Suk;Jung, Jang-Gun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1599-1605
    • /
    • 2008
  • The research was conducted in order to improve the hydrogen generation efficiency of the electrical plasma technology from tap water by using $TiO_2$ photocatalyst, mixed Cu - $TiO_2$ powder, and mixed Ni - $TiO_2$ powder as the catalysts. Experiments were performed with the pulsed power and nitrogen carrier gas. The result has shown that the hydrogen concentration with the presence of $TiO_2$ powder was created higher than that of without using photocatalyst. The hydrogen concentration with using $TiO_2$ was 3012ppm corresponding to the applied voltage of 16kV, while it without using the $TiO_2$ was 1464ppm at the same condition . The effect of $TiO_2$ powder was strongly detected at the applied voltages of 15kV and 16kV. This phenomena might be resulted from the co-effect of the pulsed power discharge and the activated state of $TiO_2$ photocatalyst. The co-effect of the mixed catalysts such as Cu-$TiO_2$ and Ni-$TiO_2$ (the mixed photocatalyst $TiO_2$ and transition metals) were also investigated. The experimental results showed that, Cu and Ni powder dopants were greatly enhancing the activity of the $TiO_2$ photocatalyst. Under these experimental conditions the extremely high hydrogen concentrations at the optimal point were produced as 4089ppm and 6630ppm, respectively.

A Study on the Driving Characteristics of Microbial Fuel Cell Using Mixed Strains in Domestic Wastewater (생활폐수 내 혼합균주를 이용한 미생물 연료전지의 구동 특성에 관한 연구)

  • KIM, SANG KYU;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.506-513
    • /
    • 2021
  • The use of fossil fuels is a major contributor to the increase atmospheric greenhouse gas emissions. As such problems arise, interest in new and renewable energy devices, particularly fuel cells, is greatly increasing. In this study, various characteristics of mixed strains were observed in wastewater collected by the Jeonju Environment Office to investigate the effects of microorganisms on voltage generation and voltage generation of substrates, electrode materials, electrons, electron transport media, and ash microbial fuel cells. As a result of separately measuring the voltage generated during inoculation, the inoculation voltage of Escherichia coli K12 (E. coli K12) was 0.45 V, and the maximum inoculation voltage of the mixed strain was 1.2 V. Thereafter, voltage values were collected using a digital multimeter and the amount of voltage generated over time was measured. In the case of E. coli K12, the maximum voltage reached 0.45 V, and the cell voltage was maintained above 0.23 V for 140 hours. In contrast, for the mixed strain, the maximum voltage reached 1.2 V and the voltage was slowly decreased to 0.97 V. In addition, the degree of microbial adsorption to the electrod surface after the inoculation test was confirmed using a scanning electron microscope. Therefore, these results showed the possibility of purifying pollutants at the same time as power generation through the production of hydrogen ions using microorganisms and wastewater.

Aromatization of 1,3,5-Trisubstituted of 4,5-Dihydro-1H-Pyrazoles by In-Situ Generation of I+ from Hydrogen Peroxide/Acids/Iodide Potassium or Sodium Systems

  • Maleki, Behrooz;Veisi, Hojat
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4366-4370
    • /
    • 2011
  • A simple, green and cost-effective protocol was used for the aromatization of 1,3,5-trisubstituted-2-pyrazolines to the corresponding pyrazoles by in situ generation of iodine ($I^+$) from $H_2O_2$/AcOH or SSA or oxalic acid /KI or NaI system under thermal condition with moderate to good yields.

The estimation of Hydroxyl radical generation rate in Ozonation (오존산화공정에서 수산화라디칼(OH.)의 생성속도 측정)

  • 권충일;공성호;배성렬
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.3-12
    • /
    • 2001
  • During ozonation process, the hydroxyl radical generation rates were measured under different experimental conditions (ozone feed rate, nitrobenzene concentration, hydroxyl radical scavenger, pH, HO$_2$O$_2$/O$_3$ etc.) Nitrobenzene could be decomposed by hydroxyl radical rather than ozone only and nitrobenzene decomposition rate was expressed with functions of ozone and nitrobenzene concentration. The rate was decreased as the hydroxyl radical scavenger concentration was increased, and all results were followed pseudo first-order reaction. Using a competitive method, hydroxyl radical generation rate was measured with probe compound and scavenger. It was proportional to ozone concentration, and 0.24mo1 of hydroxyl radical was produced with 1mol of ozone. Under different pH conditions, hydroxyl radical generation rates were measured (pH 10.2 (0.91Ms$^{-1}$ ) > pH 7.3 (0.72Ms$^{-1}$ ) > pH 5.6 (0.67Ms$^{-1}$ ) > pH 3.4 (0.63Ms$^{-1}$ )) showing higher generation rate at high pH values. Addition of hydrogen peroxide promoted the generation rate of hydroxyl radical. Considering the results of pH experiments and addition of hydrogen peroxide experiments, the hydroxyl radical generation rate was 1.6 times higher in hydrogen peroxide solution than in high pH solution, indicating addition of hydrogen peroxide is better promoter to produce the hydroxyl radical in ozonation. These results could be applied to AOPs to remediate the contaminated wastewater and groundwater.

  • PDF

A Study on Preferential CO Oxidation over Supported Pt Catalysts to Produce High Purity Hydrogen (고순도 수소 생산을 위한 CO 선택적 산화 반응용 Pt 촉매 연구)

  • Jeon, Kyung-Won;Jeong, Dae-Woon;Jang, Won-Jun;Na, Hyun-Suk;Roh, Hyun-Seog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.353-358
    • /
    • 2013
  • To develop preferential CO oxidation reaction (PROX) catalyst for small scale hydrogen generation system, supported Pt catalysts have been applied for the target reaction. The supports were systematically changed to optimize supported Pt catalysts. $Pt/Al_2O_3$ catalyst showed the highest CO conversion among the catalysts tested in this study. This is due to easier reducibility, the highest dispersion, and smallest particle diameter of $Pt/Al_2O_3$. It has been found that the catalytic performance of supported Pt catalysts for PROX depends strongly on the reduction property and depends partly on the Pt dispersion of supported Pt catalysts. Thus, $Pt/Al_2O_3$ can be a promising catalyst for PROX for small scale hydrogen generation system.

The Comparative Study of Different Membranes for Electrolytic Cell for the Hydrogen Peroxide Generation (과산화수소 발생을 위한 전해셀용 양성자 교환 막의 비교)

  • You, Sun-Kyung;Kim, Han-Joo;Kim, Tae-Il;Tsurtsumia, Gigla;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.235-238
    • /
    • 2007
  • There is great interest in the applicability of generated hydrogen peroxide to a variety of industrial processes, usually involving oxidation of organics. Hydrogen peroxide is now employed for the bleaching as well as mechanical and chemical treatment in the pulp and paper industries. It addition, it is considered as an agent to displace the traditional alkaline treatments with chlorine-based chemicals. This paper reports a comparative study of $H_2O_2$ electogeneration on gas-diffusion electrode in divided cell with several $Nafion^{(R)}$ proton-exchange membranes, Russian cation-exchange membrane MK-40 and SPEEK membrane. The influence of different PEMs on electro-chemical cell voltage, current efficiency and energy consumption of hydrogen peroxide generation has been studied.