• Title/Summary/Keyword: hydrogen generation

Search Result 807, Processing Time 0.022 seconds

The Induction of ROS-dependent Autophagy by Particulate Matter 2.5 and Hydrogen Peroxide in Human Lung Epithelial A549 Cells (미세먼지와 산화적 스트레스에 의한 인간 폐 상피 A549 세포에의 ROS 의존적 자가포식 유도)

  • Park, Beom Su;Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Hong, Su Hyun;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.310-317
    • /
    • 2022
  • Recently, interest in the harmful factors of particulate matter (PM), a major component of air pollution, has been increasing. In particular, PM2.5 with a diameter of less than 2.5 ㎛ is well known to induce oxidative stress accompanied by autophagy in human lung epithelial cells. However, studies on whether PM2.5 increases autophagy under oxidative stress and whether this process is reactive oxygen species (ROS)-dependent are insufficient. Therefore, in this study, we investigated whether PM2.5 promotes autophagy through the generation of ROS in human alveolar epithelial A594 cells. According to our results, cells co-treated with PM2.5 and hydrogen peroxide (H2O2) showed a lower cell viability than cells treated with each alone, which was associated with increased total and mitochondrial ROS production. The co-treatment of PM2.5 and H2O2 also increased autophagy induction, which was confirmed through Cyto-ID staining, and the expression of autophagy biomarker proteins increased. However, when ROS generation was artificially blocked by N-acetyl-L-cysteine pretreatment, the reduction in cell viability and induction of autophagy by PM2.5 and H2O2 co-treatment were markedly attenuated. Therefore, the present results suggest that PM2.5-induced ROS generation may play a critical role in autophagy induction in A549 cells.

Rheological Characteristics of Hydrogen Fermented Food Waste and Review on the Agitation Intensity (음식물류폐기물 수소 발효액의 유변학적 특성과 교반강도 고찰)

  • Kim, Min-Gyun;Lee, Mo-Kwon;Im, Seong-Won;Shin, Sang-Ryong;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.4
    • /
    • pp.41-50
    • /
    • 2017
  • The design of proper agitation system is requisite in biological waste treatment and energy generation plant, which is affected by viscosity, impeller types, and power consumption. In the present work, hydrogen fermentation of food waste was conducted at various operational pHs (4.5~6.5) and substrate concentrations (10~50 g Carbo. COD/L), and the viscosity of fermented broth was analyzed. The $H_2$ yield significantly varied from 0.51 to $1.77mol\;H_2/mol\;hexose_{added}$ depending on the pH value, where the highest performance was achieved at pH 5.5. The viscosity gradually dropped with shear rate increase, indicating a shear thinning property. With the disintegration of carbohydrate, the viscosity dropped after fermentation, but it did not change depending on the operational pH. At the same pH level, the $H_2$ yield was not affected much, ranging $1.40{\sim}1.86mol\;H_2/mol\;hexose_{added}$ at 10~50 g Carbo. COD/L. The zero viscosity and infinite viscosity of fermented broth increased with substrate concentrations, from 10.4 to $346.2mPa{\cdot}s$, and from 1.7 to $5.3mPa{\cdot}s$, respectively. There was little difference in the viscosity value of fermented broth at 10 and 20 g Carbo. COD/L. As a result of designing the agitation intensity based on the experimental results, it is expected that the agitation intensity can be reduced during hydrogen fermentation. The initial and final agitation intensity of 30 g Carbo. COD/L in hydrogen fermentation were 26.0 and 10.0 rpm, respectively. As fermentation went on, the viscosity gradually decreased, indicating that the power consumption for agitation of food waste can be reduced.

Effects of Calcination Temperature on Characteristics of Electrospun TiO2 Catalyst Supports for PEMFCs (열처리 온도가 전기방사방법을 이용하여 제조한 PEMFC용 TiO2 담체의 물리적 특성에 미치는 영향)

  • Kwon, Chorong;Yoo, Sungjong;Jang, Jonghyun;Kim, Hyoungjuhn;Kim, Jihyun;Cho, Eunae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.223-229
    • /
    • 2013
  • Polymer Electrolyte Membrane Fuel Cell (PEMFC) is a power generation system to convert chemical energy of fuels and oxidants to electricity directly by electrochemical reactions. As a catalyst support for PEMFCs, carbon black has been generally used due to its large surface area and high electrical conductivity. However, under certain circumstances (start up/shut down, fuel starvation, ice formation etc.), carbon supports are subjected to serve corrosion in the presence of water. Therefore, it would be desirable to switch carbon supports to corrosion-resistive support materials such as metal oxide. $TiO_2$ has been attractive as a support with its stability in fuel cell operation atmosphere, low cost, commercial availability, and the ease to control size and structure. However, low electrical conductivity of $TiO_2$ still inhibits its application to catalyst support for PEMFCs. In this paper, to explore feasibility of $TiO_2$ as a catalyst support for PEMFCs, $TiO_2$ nanofibers were synthesized by electrospinning and calcinated at 600, 700, 800 and $900^{\circ}C$. Effects of calcination temperature on crystal structure and electrical conductivity of electrospun $TiO_2$ nanofibers were examined. Electrical conductivity of $TiO_2$ nanofibers increased significantly with increasing calcination temperature from $600^{\circ}C$ to $700^{\circ}C$ and then increased gradually with increasing the calcination temperature from $700^{\circ}C$ to $900^{\circ}C$. It was revealed that the remarkable increase in electrical conductivity could be attributed to phase transition of $TiO_2$ nanofibers from anatase to rutile at the temperature range from $600^{\circ}C$ to $700^{\circ}C$.

Characteristics of Sulfur oxidation and the Removal of Hydrogen sulfide by Burkholdera[Pseudomonas] cepacia (Burkholderia[Pseudomonas] cepacia의 황 산화 특성 및 황화 수소 제거)

  • 정성제;이은관;전억한;윤인길;박창호
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.466-473
    • /
    • 2001
  • A bacterium was isolated from soils in Suwon, Korea for the purpose of H$_2$S removal using a biofilter system. The isolate was gram-negative, rod-shaped, catalase-positive, motile, and the isolated bacterium showed a positve in utilizing energy sources including citrate, mannitol, sucrose, fructors, and trehalsoe. Based on its biochemical characteristics it was identified as Burkholderia(Pseudomonas) cepacia. The growth rate of the bacterium in thiosulfate medium with yeast extract was 0.15 hr$\^$-1/ and generation time was 4.6 hr. The cell productivity was 8.05 mg/L$.$h and the isolate grew logarithmically up to 12 hr. The maximum rate of sulfur oxidation was 0.18 g-S/L$.$h. The optimum pH and temperature for the growth of the bacterium were 7.0 and 30$\^{C}$, respectively. The pH range for the growth of B. cepacia was 5.0-8.0. The oxidation rate of thiosulfate was lowered by a substrate thiosulfate when the concentration was higher than 0.12 M. both growth rate and sulfur oxidation rate of Burkholderia(Pseudomonas) cepacia was enhanced about 1.5 times with the addition of 0.2% yeast extract. The removal of hydrogen sulfide was investigated by immobilized B. cepacia with Ca-alginate. The maximum rate removal for H$_2$S was 6.25 g$.$$.$h$\^$-1/ when 12 L/h of flow rate was supplied. From this study suggest the immobilized B. cepacia could have a potential for H$_2$S removal.

  • PDF

Degradation of Humic Acid and Formation of Formaldehyde in PEROXONE Processes (PEROXONE(Ozone/Hydrogen Peroxide)공정에서의 부식산 분해 및 포름알데히드의 생성)

  • Kim, Kei Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2001
  • This research was studied the action of the coupling ozone-hydrogen peroxide on aqueous humic acid. PEROXONE process is enhanced the generation of hydroxyl radicals which is effective for degradation of organic matters. Therefore the changes of $UV_{254}$ and TOC were investigated through the change of concentrations, injection time of $H_2O_2$, initial pH of aqueous humic acid and concentrations of radical savenger as $HCO_3{^-}$ in the PEROXONE processes. And the GC/ECD was used to detect the formaldehyde formed by ozonation of humic acid. From the experimental results, concentrations and injection time of $H_2O_2$ and initial pH in solution in the PEROXONE processes were very important for enhancing the efficiency of degradation in humic acid. The results indicated that removal efficiency of TOC was the highest when concentration of $H_2O_2$ was 5mg/L, injection time of $H_2O_2$ was 5 minutes and initial pH in solution was 10.5. And presence of alkalinity in solution was reduced the efficiency of treatment. The formaldehyde were formed less PEROXONE processes than only ozone. When initial pH in solution were changed from 3.5 to 10.5, the formaldehyde were formed highest concentration at pH 5.

  • PDF

Antioxidative effects of fermented sesame sauce against hydrogen peroxide-induced oxidative damage in LLC-PK1 porcine renal tubule cells

  • Song, Jia-Le;Choi, Jung-Ho;Seo, Jae-Hoon;Kil, Jeung-Ha;Park, Kun-Young
    • Nutrition Research and Practice
    • /
    • v.8 no.2
    • /
    • pp.138-145
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: This study was performed to investigate the in vitro antioxidant and cytoprotective effects of fermented sesame sauce (FSeS) against hydrogen peroxide ($H_2O_2$)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS/METHODS: 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical ($^{\bullet}OH$), and $H_2O_2$ scavenging assay was used to evaluate the in vitro antioxidant activity of FSeS. To investigate the cytoprotective effect of FSeS against $H_2O_2$-induced oxidative damage in LLC-PK1 cells, the cellular levels of reactive oxygen species (ROS), lipid peroxidation, and endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) were measured. RESULTS: The ability of FSeS to scavenge DPPH, $^{\bullet}OH$ and $H_2O_2$ was greater than that of FSS and AHSS. FSeS also significantly inhibited $H_2O_2$-induced ($500{\mu}M$) oxidative damage in the LLC-PK1 cells compared to FSS and AHSS (P < 0.05). Following treatment with $100{\mu}g/mL$ of FSeS and FSS to prevent $H_2O_2$-induced oxidation, cell viability increased from 56.7% (control) to 83.7% and 75.6%, respectively. However, AHSS was not able to reduce $H_2O_2$-induced cell damage (viability of the AHSS-treated cells was 54.6%). FSeS more effectively suppressed $H_2O_2$-induced ROS generation and lipid peroxidation compared to FSS and AHSS (P < 0.05). Compared to the other sauces, FSeS also significantly increased cellular CAT, SOD, and GSH-px activities and mRNA expression (P < 0.05). CONCULUSIONS: These results from the present study suggest that FSeS is an effective radical scavenger and protects against $H_2O_2$-induced oxidative damage in LLC-PK1 cells by reducing ROS levels, inhibiting lipid peroxidation, and stimulating antioxidant enzyme activity.

Study on the Stability of NaBH4 Solution during Storage Process (NaBH4수용액 저장과정 중 안정성에 관한 연구)

  • Sim, Woojong;Jo, Jaeyoung;Choi, Daeki;Nam, Sukwoo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.322-326
    • /
    • 2010
  • Stability of sodium borohydride solution during storage was studied. In order to enhance the $NaBH_4$ stability, NaOH and KOH were added to the $NaBH_4$ solution. The effect of concentration of the borohydride and alkaline solution, temperature and materials of storage vessels on the rate of borohydride hydrolysis was investigated. The rate of hydrogen evolution decreased as the concentration of alkaline increased due to increase of $NaBH_4$ stability in the solution. The stability of $NaBH_4$ solution decreased when the borohydride concentration raised from 10 to 15 wt% and then increased when the $NaBH_4$ concentration increased above 15 wt% due to increase in the pH of the concentrated solution. The activity coefficient of hydrolysis of $NaBH_4$ solution(NaOH 3.0 wt%, $NaBH_4$ 25 wt%) was 115.1 kJ/mol and this value was 1.5~4.0 times higher than that of hydrolysis of $NaBH_4$ solution with catalyst. The borohydride solutions in glass and stainless-steel vessel were more stable than the solution in plastic(PE) vessel.

The Reduction of Hydrogen Peroxide in Viable Boar Sperm Cryopreserved in the Presence of Catalase (Catalase 첨가에 따른 돼지 정액 동결 및 융해 후 생존 정자에서 Hydrogen Peroxide의 감소)

  • Kim, Su-Hee;Lee, Young-Jun;Kang, Tae-Woon;Kim, Yong-Jun
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • Semen cryopreservation induces the formation of reactive oxygen species (ROS), and the ROS cause sperm damage. We aimed to investigate the effects of the antioxidative enzyme catalase (CAT) on sperm quality and ROS during cryopreservation. Sperm rich fractions collected from five Duroc boars were cryopreserved in freezing extender with (200 or 400 U/mL) or without CAT (control). After thawing, sperm motility, viability, normal morphology, plasma membrane integrity, mitochondrial function and intracellular ROS were evaluated. CAT significantly improved total sperm motility at a concentration of 400 U/mL (P < 0.05), but didn't improve progressive sperm motility, viability, morphological defects, plasma membrane integrity and mitochondrial function in frozen-thawed boar sperm. In evaluation of ROS, CAT had no effect on reduction in ${\cdot}O_2$, but scavenged $H_2O_2$ in viable frozen-thawed boar sperm at concentrations of 200 and 400 U/mL (P < 0.05). In conclusion, CAT was not enough to improve quality of frozen-thawed sperm, but can reduce $H_2O_2$ generation in viable boar sperm during cryopreservation.

NaBH4 Hydrolysis Reaction Using Co-P-B Catalyst Supported on FeCrAlloy (Co-P-B/FeCrAlloy 촉매를 이용한 NaBH4 가수분해 반응)

  • Hwang, Byungchan;Jo, Ara;Sin, Sukjae;Choi, Daeki;Nam, Sukwoo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • Properties of $NaBH_4$ hydrolysis reaction using Co-P-B/FeCrAlloy catalyst and the catalyst durability were studied. Co-P-B/FeCrAlloy catalyst showed low activation energy such as 25.2 kJ/mol in 5 wt% $NaBH_4$ solution, which was similar that of noble metal catalyst. The activation energy increased as the $NaBH_4$ concentration increased. Formation of gel at high concentration of $NaBH_4$ seriously affected hydrogen evolution rate and the catalyst durability. The catalyst loss decreased as reaction temperature increased due to lower gel formation when the concentration of $NaBH_4$ was over 20 wt%. Considering hydrogen generation rate and durability of catalyst, the catalyst supported with FeCrAlloy heat-treated at $1,000^{\circ}C$ without ultra vibration during dipping and calcination after catalyst dipping was best catalyst. To use catalyst more than three times in 25 wt% $NaBH_4$ solution, it should be reacted at higher temperature than $60^{\circ}C$.

Influence of the hydrogen post-annealing on the electrical properties of metal/alumina/silicon-nitride/silicon-oxide/silicon capacitors for flash memories

  • Kim, Hee-Dong;An, Ho-Myoung;Seo, Yu-Jeong;Zhang, Yong-Jie;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.122-122
    • /
    • 2008
  • Recently, Metal/Alumina/Silicon-Nitride/Silicon-Oxide/Silicon (MANOS) structures are one of the most attractive candidates to realize vertical scaling of high-density NAND flash memory [1]. However, as ANO layers are miniaturized, negative and positive bias temperature instability (NBTI/PBTI), such as the flat band voltage shift, ${\Delta}V_{FB}$, the interfacial trap density increase, ${\Delta}D_{it}$, the gate leakage current, ${\Delta}I_G$. and the retention characteristics, in MONOS capacitors, becomes an important issue in terms of reliability. It is well known that tunnel oxide degradation is a result of the oxide and interfacial traps generation during FN (Fowler-Nordheim) stress [2]. Because the bias temperature stress causes an increase of both interfacial-traps and fixed oxide charge could be a factor, witch can degrade device reliability during the program and erase operation. However, few studies on NBTI/PBTI have been conducted on improving the reliability of MONOS devices. In this work, we investigate the effect of post-annealing gas on bias temperature instability (BTI), such as the flat band voltage shift, ${\Delta}V_{FB}$, the interfacial trap density shift, ${\Delta}I_G$ retention characteristics, and the gate leakage current characteristics of MANOS capacitors. MANOS samples annealed at $950^{\circ}C$ for 30 s by a rapid thermal process were treated via additional annealing in a furnace, using annealing gases $N_2$ and $N_2-H_2$ (2 % hydrogen and 98 % nitrogen mixture gases) at $450^{\circ}C$ for 30 min. MANOS samples annealed in $N_2-H_2$ ambient had the lowest flat band voltage shift, ${\Delta}V_{FB}$ = 1.09/0.63 V at the program/erase state, and the good retention characteristics, 123/84 mV/decade at the program/erase state more than the sample annealed at $N_2$ ambient.

  • PDF