Browse > Article
http://dx.doi.org/10.17137/korrae.2017.25.4.41

Rheological Characteristics of Hydrogen Fermented Food Waste and Review on the Agitation Intensity  

Kim, Min-Gyun (Department of Civil Engineering, Inha University)
Lee, Mo-Kwon (Department of Civil Engineering, Inha University)
Im, Seong-Won (Department of Civil Engineering, Inha University)
Shin, Sang-Ryong (Department of Civil Engineering, Inha University)
Kim, Dong-Hoon (Department of Civil Engineering, Inha University)
Publication Information
Journal of the Korea Organic Resources Recycling Association / v.25, no.4, 2017 , pp. 41-50 More about this Journal
Abstract
The design of proper agitation system is requisite in biological waste treatment and energy generation plant, which is affected by viscosity, impeller types, and power consumption. In the present work, hydrogen fermentation of food waste was conducted at various operational pHs (4.5~6.5) and substrate concentrations (10~50 g Carbo. COD/L), and the viscosity of fermented broth was analyzed. The $H_2$ yield significantly varied from 0.51 to $1.77mol\;H_2/mol\;hexose_{added}$ depending on the pH value, where the highest performance was achieved at pH 5.5. The viscosity gradually dropped with shear rate increase, indicating a shear thinning property. With the disintegration of carbohydrate, the viscosity dropped after fermentation, but it did not change depending on the operational pH. At the same pH level, the $H_2$ yield was not affected much, ranging $1.40{\sim}1.86mol\;H_2/mol\;hexose_{added}$ at 10~50 g Carbo. COD/L. The zero viscosity and infinite viscosity of fermented broth increased with substrate concentrations, from 10.4 to $346.2mPa{\cdot}s$, and from 1.7 to $5.3mPa{\cdot}s$, respectively. There was little difference in the viscosity value of fermented broth at 10 and 20 g Carbo. COD/L. As a result of designing the agitation intensity based on the experimental results, it is expected that the agitation intensity can be reduced during hydrogen fermentation. The initial and final agitation intensity of 30 g Carbo. COD/L in hydrogen fermentation were 26.0 and 10.0 rpm, respectively. As fermentation went on, the viscosity gradually decreased, indicating that the power consumption for agitation of food waste can be reduced.
Keywords
$H_2$ fermentation; Rheological properties; Viscosity; Shear thinning; Agitation design;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 [김의영, 홍영규, 신세계, 오택근, 이창훈, 이덕배, 김성철, "국내 음식물 폐기물의 자원화 및 감량화 정책 변화 고찰", 한국토양비료학회지] Kim, E.Y., Hong, Y.G., Shin, S.G., Oh, T.K., Lee, C.H., Lee, D.B., Kim, S.C., "Review of food waste utilization and reduction policy in Korea", Korean Journal of Soil Science and Fertilizer, pp. 229-229. (2015).
2 [녹생성장위원회, 음식물쓰레기 줄이기 종합대책] Green Growth Korea, "Comprehensive measures to reduce food waste", (2010).
3 [최근호, 엄태호, "정보기술을 활용한 지방정부 환경규제의 성과에 관한 연구: 음식물쓰레기종량제를 중심으로", 지방정부연구학회] Choi, K.H., Eom, T.H., "A Study on the performance of environmental regulation of local government utilizing information technology: Focusing on the food waste system", The Korean Journal of Local Goverment Studies, 21(2), pp. 77-102. (2017).   DOI
4 [박종웅, 최동혁, "음폐수를 탄소원으로 이용시 생분해 및 탈질특성에 미치는 영향", 한국도시환경학회지] Park, J.W., Choi, D.H., "Effect of Biodegradation and Denitrification Characteristics using Carbon Source with Food Wastes Leachate", Journal of Korean Society of Urban Environment, 11(1), pp. 41-48. (2011).
5 Ghosh, S., Buoy, K., Dressel, L., Miller, T., Wilcox, G., Loos, D., "Pilot-and full-scale two-phase anaerobic digestion of municipal sludge", Water Environ Res, 67(2), pp. 206-214. (1995).   DOI
6 [황보준권, 서재건, 윤희철, 박현건, 이보원, "단상 및 이상혐기성소화공정을 이용한 음폐수의 바이오에너지화", 토지주택연구원 학술지] Hwangbo, J.K., Seo, J.G., Yoon, H.C., Park, H.G., Lee, B.W., "The single- and two-phase anaerobic digestion of food waste effluent", LHI Journal, 2(1), pp. 87-92. (2011).
7 Zhang, C., Su, H., Baeyens, J., Tan, T., "Reviewing the anaerobic digestion of food waste for biogas production", Renew. Sustain. Energy Rev., 38, pp. 383-392. (2014).   DOI
8 Ueno, Y., Fukui, H., Goto, M., "Operation of a two-stage fermentation process producing hydrogen and methane from organic waste", Environ. Sci. Technol., 41(4), 1413-1419. (2007).   DOI
9 Nagao, N., Tajima, N., Kawai, M., Niwa, C., Kurosawa, N., Matsuyama, T., Yusoff, F.M., Toda, T., "Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste", Bioresour Technol, 118, pp. 210-218. (2012).   DOI
10 [김홍석, 이태진, "슬러지 저감을 위한 혐기성 소화조 개선에 관한 연구", 대한환경공학회] Kim, H.S., Lee, T.J., "A study of the improvement in an anaerobic digester for sludge reduction", Korean Society of Environmental Engineers, 33(7), pp. 516-522. (2011).   DOI
11 [환경부, 음식물류폐기물 바이오가스화시설 기 술지침서 2nd Edition] Ministry of Environment, "Food waste biogasification facility technical guide book: 2nd Edition", (2015).
12 [경기개발연구원, 소화조 효율개선 및 에너지 자원화사업 타당성 평가] Gyeonggi Research Institute, "Improvement of digestion tank efficiency and feasibility study on biomass gas use", pp. 1-145. (2011).
13 Hreiz, R., Adouani, N., Funfschilling, D., Marchal, P., Pons, M. N., "Rheological characterization of raw and anaerobically digested cow slurry", Chem Eng Res Des, 119, pp. 47-57. (2017).   DOI
14 [김동훈, 이모권, 임소영, 김미선, "혐기 발효공정을 통한 음식물류폐기물 탈리액으로부터 수소 생산", 한국수소 및 신에너지학회] Kim, D.H., Lee, M.K., Lim, S.Y., Kim, M.S., "Dark fermentative hydrogen production using the wastewater generated from food waste recycling facilities", Trans. of the Korean Hydrogen and New Energy Society, 22(3), pp. 326-332. (2011).
15 Baroutian, S., Eshtiaghi, N., Gapes, D. J., "Rheology of a primary and secondary sewage sludge mixture: dependency on temperature and solid concentration", Bioresour Technol, 140, pp. 227-233. (2013).   DOI
16 Baudez, J. C., Markis, F., Eshtiaghi, N., Slatter, P., "The rheological behaviour of anaerobic digested sludge", Water Res, 45(17), pp. 5675-5680. (2011).   DOI
17 Wang, H. F., Hu, H., Yang, H. Y., Zeng, R. J., "Characterization of anaerobic granular sludge using a rheological approach", Water Res, 106, pp. 116-125. (2016).   DOI
18 Eshtiaghi, N., Markis, F., Yap, S. D., Baudez, J. C., Slatter, P., "Rheological characterisation of municipal sludge: a review", Water Res, 47(5), pp. 5493-5510. (2013).   DOI
19 Karthikeyan, O. P., Trably, E., Mehariya, S., Bernet, N., Wong, J. W., Carrere, H., "Pretreatment of food waste for methane and hydrogen recovery: A review", Bioresour Technol, (2017).
20 Lay, J. J., Fan, K. S., Ku, C. H., "Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge", Int J Hydrogen Energy, 28(12), pp. 1361-1367. (2003).   DOI
21 Kim, D. H., Kim, S. H., Jung, K. W., Kim, M. S., Shin, H. S., "Effect of initial pH independent of operational pH on hydrogen fermentation of food waste", Bioresour Technol, 102(18), pp. 8646-8652. (2011).   DOI
22 APHA., "Standard Methods for the Examination of Water and Wastewater", 21th Edition. (2005).
23 Kim, D.H., Kim, S.H., Kim, H.W., Kim, M.S., Shin, H.S., "Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance", Bioresour Technol, 102(18), pp. 8501-8506. (2011).   DOI
24 Baudez, J. C., Gupta, R. K., Eshtiaghi, N., Slatter, P., "The viscoelastic behaviour of raw and anaerobic digested sludge: strong similarities with soft-glassy materials", Water Res, 47(1), pp. 173-180. (2013).   DOI
25 Jiang, J., Wu, J., Poncin, S., Li, H. Z., "Rheological characteristics of highly concentrated anaerobic digested sludge", Biochem Eng J, 86, pp. 57-61. (2014).   DOI
26 Casson, N., "Flow equation for pigment-oil suspension of the print ing ink type. In: rheology of disperse systems", C.C. Mill, Ed., pp. 84-102, (1959).
27 Markis, F., Baudez, J. C., Parthasarathy, R., Slatter, P., Eshtiaghi, N., "Rheological characterisation of primary and secondary sludge: Impact of solids concentration", Chem Eng J, 253, pp. 526-537. (2014).   DOI
28 Mu, Y., Chen, X. H., Yu, H. Q., "Rheological properties of anaerobic hydrogen-producing flocs", Biochem Eng J, 34(1), pp. 87-91. (2007).   DOI
29 Dai, X., Gai, X., Dong, B., "Rheology evolution of sludge through high-solid anaerobic digestion", Bioresour Technol, 174, pp. 6-10. (2014).   DOI
30 Ratkovich, N., Horn, W., Helmus, F. P., Rosenberger, S., Naessens, W., Nopens, I., Bentzen, T. R., "Activated sludge rheology: a critical review on data collection and modelling", Water Res, 47(2), pp. 463-482. (2013).   DOI
31 Brodkey, R. S., Hershey, H. C., "Transport phenomena: a unified approach: Chapter 9", McGraw-Hill, pp. 359-399. (2003).
32 Seyssiecq, I., Marrot, B., Djerroud, D., Roche, N., "In situ triphasic rheological characterisation of activated sludge, in an aerated bioreactor", Chem Eng J, 142(1), pp. 40-47. (2008).   DOI
33 Noike, T., Takabatake, H., Mizuno, O., Ohba, M., "Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria", Int J Hydrogen Energy, 27(11), pp. 1367-1371. (2002).   DOI
34 Khanal, S. K., Chen, W. H., Li, L., Sung, S., "Biological hydrogen production: effects of pH and intermediate products", Int J Hydrogen Energy, 29(11), pp. 1123-1131. (2004).   DOI
35 Baroutian, S., Munir, M. T., Sun, J., Eshtiaghi, N., Young, B. R., "Rheological characterisation of biologically treated and non-treated putrescible food waste", Waste Manag. (2017).
36 Cao, X., Jiang, Z., Cui, W., Wang, Y., Yang, P., "Rheological properties of municipal sewage sludge: dependency on solid concentration and temperature", Procedia Environ Sci, 31, pp. 113-121. (2016).   DOI
37 Farno, E., Baudez, J. C., Parthasarathy, R., Eshtiaghi, N., "Rheological characterisation of thermally-treated anaerobic digested sludge: Impact of temperature and thermal history", Water Res, 56, pp. 156-161. (2014).   DOI
38 Farno, E., Baudez, J. C., Parthasarathy, R., Eshtiaghi, N., "The viscoelastic characterisation of thermally-treated waste activated sludge", Chem Eng J, 304, pp. 362-368. (2016).   DOI