DOI QR코드

DOI QR Code

NaBH4 Hydrolysis Reaction Using Co-P-B Catalyst Supported on FeCrAlloy

Co-P-B/FeCrAlloy 촉매를 이용한 NaBH4 가수분해 반응

  • Hwang, Byungchan (Department of Chemical Engineering, Sunchon National University) ;
  • Jo, Ara (Department of Chemical Engineering, Sunchon National University) ;
  • Sin, Sukjae (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Choi, Daeki (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Nam, Sukwoo (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
  • 황병찬 (순천대학교 화학공학과) ;
  • 조아라 (순천대학교 화학공학과) ;
  • 신석재 (한국과학기술연구원 연료전지센터) ;
  • 최대기 (한국과학기술연구원 연료전지센터) ;
  • 남석우 (한국과학기술연구원 연료전지센터) ;
  • 박권필 (순천대학교 화학공학과)
  • Received : 2012.07.20
  • Accepted : 2012.08.24
  • Published : 2013.02.01

Abstract

Properties of $NaBH_4$ hydrolysis reaction using Co-P-B/FeCrAlloy catalyst and the catalyst durability were studied. Co-P-B/FeCrAlloy catalyst showed low activation energy such as 25.2 kJ/mol in 5 wt% $NaBH_4$ solution, which was similar that of noble metal catalyst. The activation energy increased as the $NaBH_4$ concentration increased. Formation of gel at high concentration of $NaBH_4$ seriously affected hydrogen evolution rate and the catalyst durability. The catalyst loss decreased as reaction temperature increased due to lower gel formation when the concentration of $NaBH_4$ was over 20 wt%. Considering hydrogen generation rate and durability of catalyst, the catalyst supported with FeCrAlloy heat-treated at $1,000^{\circ}C$ without ultra vibration during dipping and calcination after catalyst dipping was best catalyst. To use catalyst more than three times in 25 wt% $NaBH_4$ solution, it should be reacted at higher temperature than $60^{\circ}C$.

Co-P-B/FeCrAlloy 촉매의 $NaBH_4$ 가수분해 특성과 내구성에 대해 연구하였다. 5 wt% $NaBH_4$ 농도에서 활성화 에너지가 25.2 kJ/mol로 귀금속 촉매와 비슷했고, $NaBH_4$ 농도가 증가할수록 활성화 에너지가 증가하였다. 20 wt% 이상의 $NaBH_4$ 농도에서 겔 형성이 수소발생과 촉매 내구성에 많은 영향을 줬다. $NaBH_4$ 농도가 높을 때 반응온도가 높을수록 겔 형성이 안 되므로 촉매 손실률이 낮았다. 수소발생과 촉매 내구성을 모두 고려했을 때 담지체를 $1,000^{\circ}C$에서 열처리하고, 초음파 진동없이 촉매를 담지하고, 촉매 담지 후 소성한 촉매가 우수하였다. 25 wt% $NaBH_4$에서는 촉매를 3회 이상 재사용하기 위해서는 $60^{\circ}C$ 이상의 온도에서 반응시켜야 함을 보였다.

Keywords

References

  1. Aneesh, C. G., Raju, E., Kartik, I., Rajesh, B., Manvendra, V. and Pratibha, S., "Effect of Zeolites on Thermal Decomposition of Ammonia Borane," Int. J. Hydrog. Energy, 37, 3712-3718(2012). https://doi.org/10.1016/j.ijhydene.2011.04.011
  2. Fernandes, R., Patel, N., Miotello, A. and Filippi, M., "Studies on Catalytic Behavior of Co-Ni-B in Hydrogen Production by Hydrolysis of $NaBH_{4}$," J. Mol. Catal. A-Chem., 298, 1-6(2009). https://doi.org/10.1016/j.molcata.2008.09.014
  3. Fernandes, R., Patel, N., Miotello, A., Jaiswal, R. and Korthari, D. C., "Stability, Durability, and Reusability Studies on Transition Metal-doped Co-B Alloy Catalysts for Hydrogen Production," Int. J. Hydrog. Energy, 36, 13379-13391(2011). https://doi.org/10.1016/j.ijhydene.2011.08.021
  4. Fernandes, R., Patel, N. and Miotello, A., "Hydrogen Generation by Hydrolysis of Alkaline $NaBH_{4}$ Solution with Cr-promoted Co-B Amorphous Catalyst," Appl. Catal. B: Environ., 92, 68-74(2009). https://doi.org/10.1016/j.apcatb.2009.07.019
  5. Fernandes, R., Patel, N. and Miotello, A., "Efficient Catalytic Properties of Co-Ni-P-B Catalyst Powders for Hydrogen Generation by Hydrolysis of Alkaline Solution of $NaBH_{4}$," Int. J. Hydrog. Energy, 34, 2893-2900(2009). https://doi.org/10.1016/j.ijhydene.2009.02.007
  6. Demirci, U. B. and Garin, F., "Kinetics of Ru-promoted Sulphated Zirconia Catalysed Hydrogen Generation by Hydrolysis of Sodium Tetrahydroborate," J. Mol. Catal. A-Chem., 279(1), 57-62(2008). https://doi.org/10.1016/j.molcata.2007.09.025
  7. Demirci, U. B. and Garin, F., "Ru-based Bimetallic Alloys for Hydrogen Generation by Hydrolysis of Sodium Tetrahydroborate," J. Alloy. Compd., 463, 107-111(2008). https://doi.org/10.1016/j.jallcom.2007.08.077
  8. Ye, W., Zhang, H., Xu, D., Ma, L. and Yi, B., "Hydrogen Generation Utilizing Alkaline Sodium Borohydride Solution and Supported Cobalt Catalyst," J. Power Sources, 164, 544-548(2007). https://doi.org/10.1016/j.jpowsour.2006.09.114
  9. Simagina, V. I., Netskina, O. V., Komova, O. V., Odegova, G. V., Kochubei, D. I. and Ishchenko, A. V., "Activity of Rh/$TiO_{2}$ Catalysts in $NaBH_{4}$ Hydrolysis: The Effect of the Interaction Between $RhCl_{3}$ and the Anatase Surface During Heat Treatment," Kinet. Catal., 49(4), 568-573(2008). https://doi.org/10.1134/S0023158408040174
  10. Simagina, V. I., Storozhenko, P. A., Netskina, O. V., Komova, O. V., Odegova, G. V., Samoilenko, T. Y. and Gentsler, A. G., "Effect of the Nature of the Active Component and Support on the Activity of Catalysts for the Hydrolysis of Sodium Borohydride," Kinet. Catal., 48(1), 168-175(2007). https://doi.org/10.1134/S0023158407010223
  11. Demirci, U. B. and Garin, F., "Promoted Sulphated-zirconia Catalysed Hydrolysis of Sodium Tetrahydroborate," Catal. Commun., 9(6), 1167-1172(2008). https://doi.org/10.1016/j.catcom.2007.10.028
  12. Chen, Y. and Kim, H., "Ni/Ag/Silica Nanocomposite Catalysts for Hydrogen Generation from Hydrolysis of $NaBH_{4}$ Solution," Mater. Lett., 62, 1451-1454(2008). https://doi.org/10.1016/j.matlet.2007.08.084
  13. Kim, J. H., Lee, H., Han, S. C., Kim, H. S., Song, M. S. and Lee, J. Y., "Production of Hydrogen from Sodium Borohydride in Alkaline Solution: Development of Catalyst with High Performance," Int. J. Hydrog. Energy, 29, 263-267(2004). https://doi.org/10.1016/S0360-3199(03)00128-9
  14. Kim, J. H., Kim, K. T., Kang, Y. M., Kim, H. S., Song, M. S., Lee, Y. J., Lee, P. S. and Lee, J. Y., "Study on Degradation of Lamentary Ni Catalyst on Hydrolysis of Sodium Borohydride," J. Alloy. Compd., 379(1-2), 222-227(2004). https://doi.org/10.1016/j.jallcom.2004.02.009
  15. Lee, J., Kong, K. Y., Jung, C. R., Cho, E., Yoon, S. P., Han, J., Lee, T. G. and Nam, S. W., "A Structured Co-B Catalyst for Hydrogen Extraction from NaBH4 Solution," Catal. Today, 120(3-4), 305-310(2007). https://doi.org/10.1016/j.cattod.2006.09.019
  16. Dai, H. B., Liang, Y., Wang, P. and Cheng, H. M., "Amorphous Cobalt-boron/nickel Foam as an Effective Catalyst for Hydrogen Generation from Alkaline Sodium Borohydride Solution," J. Power Sources, 177(1), 17-23(2008). https://doi.org/10.1016/j.jpowsour.2007.11.023
  17. Amendola, S. C., Sharp-Goldman, S. L., Janjua, M. S., Kelly, M. T., Petillo, P. J. and Binder, M., "An Ultrasafe Hydrogen Generator: Aqueous, Alkaline Borohydride Solutions and Ru Catalyst," J. Power Sources, 85(2), 186-189(2000). https://doi.org/10.1016/S0378-7753(99)00301-8
  18. Ozkar, S. and Zahmakiran, M., "Hydrogen Generation from Hydrolysis of Sodium Borohydride Using Ru(0) Nanoclusters as Catalyst," J. Alloy. Compd., 404-406, 728-731(2005). https://doi.org/10.1016/j.jallcom.2004.10.084
  19. Zhang, J. S., Delgass, W. N., Fisher, T. S. and Gore, J. P., "Kinetics of Ru-catalyzed Sodium Borohydride Hydrolysis," J. Power Sources, 164(2), 772-781(2007). https://doi.org/10.1016/j.jpowsour.2006.11.002
  20. Ye, W., Zhang, H., Xu, D., Ma, L. and Yi, B., "Hydrogen Generation Utilizing Alkaline Sodium Borohydride Solution and Supported Cobalt Catalyst," J. Power Sources, 164(2), 544-548 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.114
  21. Shang, Y. and Chen, R., "Hydrogen Storage via the Hydrolysis of NaBH4 Basic Solution: Optimization of $NaBH_{4}$ Concentration," Energy Fuels, 20(5), 2142-2148(2006). https://doi.org/10.1021/ef050363q
  22. Zhang, Q., Wu, Y., Sun, X. and Ortega, J., "Kinetics of Catalytic Hydrolysis of Stabilized Sodium Borohydride Solutions," Ind. Eng. Chem. Res., 46(4), 1120-1124(2007). https://doi.org/10.1021/ie061086t
  23. Mitov, M., Rashkov, R. and Atanassov, N., "Effects of Nickel Foam Dimensions on Catalytic Activity of Supported Co-Mn-B Nanocomposites for Hydrogen Generation from Stabilized Borohydride Solutions," J. Mater. Sci., 42, 3367-3372(2007). https://doi.org/10.1007/s10853-006-0786-0
  24. Patel, N., Fernandes, R. and Miotello, A., "Hydrogen Generation by Hydrolysis of $NaBH_{4}$ with Efficient Co-P-B Catalyst: A Kinetic Study," J. Power sources, 188(2), 411-420(2009). https://doi.org/10.1016/j.jpowsour.2008.11.121
  25. Amendola, S. C., Sharp-Goldman, S. L., Janjua, M. S., Spencer, N. C., Kelly, M. T., Petillo, P. J. and Binder, M., "A Safe, Portable, Hydrogen Gas Generator Using Aqueous Borohydride Solution and Ru Catalyst," Int. J. Hydrog. Energy, 25(10), 969-975 (2000). https://doi.org/10.1016/S0360-3199(00)00021-5
  26. Jeong, S. U., Kim, R. K., Cho, E. A., Kim, H. J., Nam, S. W., Oh, I. H., Hong, S. A. and Kim, S. H., "A Study on Hydrogen Generation from $NaBH_{4}$ Solution Using the High-performance Co-B Catalyst," J. Power Sources, 144(1), 129-134(2005). https://doi.org/10.1016/j.jpowsour.2004.12.046
  27. Hwang, B. C., Jo, J. Y., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "Study on the Hydrogen Yield of $NaBH_{4}$ Hydrolysis Reaction," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 49(5), 516-520(2011). https://doi.org/10.9713/kcer.2011.49.5.516
  28. Patel, N., Patton, B., Zanchetta, C., Fernandes, R., Guella, G., Kale, A. and Miotello, A., "Pd-C Powder and Thin lm Catalysts for Hydrogen Production by Hydrolysis of Sodium Borohydride," Int. J. Hydrog. Energy, 33(1), 287-292(2008). https://doi.org/10.1016/j.ijhydene.2007.07.018
  29. Patel, N., Fernandes, R., Guella, G., Kale, A., Miotello, A., Patton, B. and Zanchetta, C., "Structured and Nanoparticle Assembled CoB Thin Films Prepared by Pulsed Laser Deposition: A Very Efficient Catalyst for Hydrogen Production," J. Phys. Chem. C, 112(17), 6968-6976(2008).
  30. Guella, G., Patton, B. and Miotello, A., "Kinetic Features of the Platinum Catalyzed Hydrolysis of Sodium Borohydride from 11B NMR Measurements," J. Phys. Chem. C, 111(50), 18744-18750 (2007). https://doi.org/10.1021/jp0759527
  31. Metin, O. and Ozkar, S., "Hydrogen Generation from the Hydrolysis of Sodium Borohydride by Using Water Dispersible, Hydrogenphosphate- stabilized Nickel(0) Nanoclusters as Catalyst," Int. J. Hydrog. Energy, 32(12), 1707-1715(2007).
  32. Ingersoll, J. C., Mani, N., Thenmozhiyal, J. C. and Muthaiah, A., "Catalytic Hydrolysis of Sodium Borohydride by a Novel Nickelcobalt- boride Catalyst," J. Power Sources, 173(1), 450-457(2007). https://doi.org/10.1016/j.jpowsour.2007.04.040
  33. Shang, Y. and Chen, R., "Semiempirical Hydrogen Generation Model Using Concentrated Sodium Borohydride Solution," Energy Fuels, 20(5), 2149-2154(2006). https://doi.org/10.1021/ef050380f
  34. Kim, T. H., Lee, H., Sim, W. J., Kim, S. H., Lee, J. H., Lim, T. W. and Park, K. P., "Degradation of Proton Exchange Membrane by Pt Dissolved/Deposited in Fuel Cells," Korean J. Chem. Eng., 26, 1265-1271(2009). https://doi.org/10.2478/s11814-009-0212-9
  35. Hwang, B. C., Cho, A. R., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "Durability of Co-P-B/Cu Catalyst for $NaBH_{4}$ Hydrolysis Reaction," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 20(4), (2012).

Cited by

  1. using Unsupported Co-B, Co-P-B Catalyst vol.53, pp.1, 2015, https://doi.org/10.9713/kcer.2015.53.1.11
  2. NaBH4 가수분해 반응기 소재로서 알루미늄 합금의 특성 연구 vol.53, pp.6, 2013, https://doi.org/10.9713/kcer.2015.53.6.677
  3. NaBH4 가수분해 반응에 의한 무인항공기용 PEMFC 수소공급 vol.54, pp.1, 2016, https://doi.org/10.9713/kcer.2016.54.1.11
  4. 고농도 NaBH4 수용액에서 비담지 촉매의 가수분해 반응 특성 vol.54, pp.5, 2013, https://doi.org/10.9713/kcer.2016.54.5.587
  5. 비담지 촉매를 이용한 NaBH4 가수분해반응에서 부산물의 특성 vol.55, pp.1, 2013, https://doi.org/10.9713/kcer.2017.55.1.13
  6. 활성탄 담지 Co-B/C, Co-P-B/C 촉매를 이용한 NaBH4 가수분해 반응 vol.56, pp.5, 2013, https://doi.org/10.9713/kcer.2018.56.5.641
  7. 바닷물을 이용한 NaBH4 가수분해에 의한 수소발생 vol.57, pp.6, 2013, https://doi.org/10.9713/kcer.2019.57.6.758