• 제목/요약/키워드: hydrogen evolution reaction

검색결과 144건 처리시간 0.026초

백금족 전력 계면에서 전기화학적 Impulse 발진 (Electrochemical Impulse Oscillations at the Platinum Group Electrode Interfaces)

  • 전장호;손광철;라극환
    • 전자공학회논문지A
    • /
    • 제32A권3호
    • /
    • pp.143-151
    • /
    • 1995
  • The electrochemical impulse oscillations of the cathodic currents at the platinum group (Pt, Pd) electrode/(0.05M KHC$_{8}H_{4}O_{4}$) buffer solution interfaces have been studied using voltammetric, chronoamperometric, and electrochemical impedance methods. The periodic impulses of the cathodic currents are the activation controlled currents due to the hydrogen evolution reaction, and depend on the fractional surface coverage of the adsorbed hydrogen intermediate and potential. The oscillatory mechanism of the cathodic current impulses is connected with the unstable steady state of negative differential resistance. The widths and periods of the cathodic current impulses are 4ms or 5ms and 152.5ms or 305ms, respectively. The H$^{+}$ discharge reaction step is 38 or 61 times faster thatn the recombination reaction steps and the H$^{+}$ mass transport processes. The atom-atom recombination reaction step is twice faster thatn the atom-ion recombination reaction step. The two kinds of active sites corresponding to the atom-atom and atom-ion recombination reaction steps exist on the platinum group electrode surfaces.

  • PDF

Physical Vapor Deposition 방법으로 제조된 Al-Ni 전극의 두께가 알칼라인 수전해 수소발생반응에 미치는 영향 연구 (Understanding the Effect on Hydrogen Evolution Reaction in Alkaline Medium of Thickness of Physical Vapor Deposited Al-Ni Electrodes)

  • 한원비;조현석;조원철;김창희
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.610-617
    • /
    • 2017
  • This paper presents a study of the effect of thickness of porous Al-Ni electrodes, on the Hydrogen Evolution Reaction (HER) in alkaline media. As varying deposition time at 300 W DC sputtering power, the thickness of the Al-Ni electrodes was controlled from 1 to $20{\mu}m$. The heat treatment was carried out in $610^{\circ}C$, followed by selective leaching of the Al-rich phase. XRD studies confirmed the presence of $Al_3Ni_2$ intermetallic compounds after the heat treatment, indicating the diffusion of Ni from the Ni-rich phase to Al-rich phase. The porous structure of the Al-Ni electrodes after the selective leaching of Al was also confirmed in SEM-EDS analysis. The double layer capacitance ($C_{dl}$) and roughness factor ($R_f$) of the electrodes were increased for the thicker Al-Ni electrodes. As opposed to the general results in above, there were no further improvements of the HER activity in the case of the electrode thickness above $10{\mu}m$. This result may indicate that the $R_f$ is not the primary factor for the HER activity in alkaline media.

Raney Ni-Zn-Fe 전극의 산소발생 반응 특성에 미치는 도금변수의 영향 (Effect of Electroplating Parameters on Oxygen Evolution Reaction Characteristics of Raney Ni-Zn-Fe Electrode)

  • 채재병;김종원;배기광;박주식;정성욱;정광진;김영호;강경수
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.23-32
    • /
    • 2020
  • The intermittent characteristics of renewable energy complicates the process of balancing supply with demand. Electrolysis technology can provide flexibility to grid management by converting electricity to hydrogen. Alkaline electrolysis has been recognized as established technology and utilized in industry for over 100 years. However, high overpotential of oxygen evolution reaction in alkaline water electrolysis reduces the overall efficiency and therefore requires the development of anode catalyst. In this study, Raney Ni-Zn-Fe electrode was prepared by electroplating and the electrode characteristics was studied by varying electroplating parameters like electrodeposition time, current density and substrate. The prepared Raney Ni-Zn-Fe electrode was electrochemically evaluated using linear sweep voltammetry. Physical and chemical analysis were conducted by scanning electron microscope, energy dispersive spectrometer, and X-ray diffraction. The plating time did not changed the morphology and composition of the electrode surface and showed a little effect on overpotential reduction. As the plating current density increased, Fe content on the surface increased and cauliflower-like structure appeared on the electrode surface. In particular, the overpotential of the electrode, which was prepared at the plating current density of 320 mA/㎠, has showed the lowest value of 268 mV at 50 mA/㎠. There was no distinguishable overpotential difference between the type of substrate for the electrodes prepared at 80 mA/㎠.

수소발생반응을 위한 Ni4Cr 나노 섬유 전기화학 촉매 합성 및 특성 분석 (Synthesis and Characterization of Ni4Cr Nanofiber Electrocatalyst for Hydrogen Evolution Reaction)

  • 이정훈;장명제;박유세;최승목;김양도;이규환
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.322-331
    • /
    • 2017
  • Hydrogen evolution reaction(HER) was studied over $Ni_4Cr$ nanofibers(NFs) prepared by electrospinning method and oxidation/reduction heat treatment for alkaline water electrolysis. The physicochemical and electrochemical properties such as average diameter, lattice parameter, HER activity of synthesized $Ni_4Cr$ NFs could be modified by proper electrospinning process condition and reduction temperature. It was shown that $Ni_4Cr$ NFs had average diameter from 151 to 273 nm. Also, it exhibited the overpotential between 0.419 V and 0.526 V at $1mA/cm^2$ and Tafel slope of -334.75 mV to -444.55 mV per decade in 1 M KOH solution. These results indicate that $Ni_4Cr$ NFs with reduction heat treatment at $600^{\circ}C$ show thinnest diameter and highest HER activity among the other catalysts.

Fabrication of Ni-Mo-based Electrocatalysts by Modified Zn Phosphating for Hydrogen Evolution Reaction

  • Im, Han Seo;Park, Seon Ha;Ha, Hyo Jeong;Lee, Sumin;Heo, Sungjun;Im, Sang Won;Nam, Ki Tae;Lim, Sung Yul
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.54-62
    • /
    • 2022
  • The preparation of low-cost, simple, and scalable electrodes is crucial for the commercialization of water electrolyzers for H2 production. Herein, we demonstrate the fabrication of cathodes through Mo-modified Zn phosphating of Ni foam (NiF) for water electrolysis, which has been largely utilized in surface coating industry. In situ growth of electrocatalytically active layers in the hydrogen evolution reaction (HER) was occurred after 1 min of phosphating to form ZnNiMoPi, and subsequent thermal treatment and electrochemical activation resulted in the formation of ZnNiMoPOxHy. ZnNiMoPOxHy exhibited superior HER performance than NiF, primarily because of the increased electrochemically active surface area of ZnNiMoPOxHy compared to that of bare NiF. Although further investigations to improve the intrinsic electrochemical activity toward the HER and detailed mechanistic studies are required, these results suggest that phosphating is a promising coating method and will possibly advance the fabrication procedure of electrodes for water electrolyzers with better practical applications.

Rich Se Nanoparticles Modified Mo-W18O49 as Enhanced Electrocatalyst for Hydrogen Evolution Reaction

  • Wang, Jun Hui;Tang, Jia-Yao;Fan, Jia-Yi;Meng, Ze-Da;Zhu, Lei;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제32권2호
    • /
    • pp.57-65
    • /
    • 2022
  • Herein a rich, Se-nanoparticle modified Mo-W18O49 nanocomposite as efficient hydrogen evolution reaction catalyst is reported via hydrothermal synthesized process. In this work, Na2SeSO3 solution and selenium powder are used as Se precursor material. The structure and composition of the nanocomposites are characterized by X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), EDX spectrum analysis and the corresponding element mapping. The improved electrochemical properties are studied by current density, and EIS analysis. The as-prepared Se modified Mo-W18O49 synthesized via Na2SeSO3 is investigated by FE-SEM analysis and found to exhibit spherical particles combined with nanosheets. This special morphology effectively improves the charge separation and transfer efficiency, resulting in enhanced photoelectric behavior compared with that of pure Mo-W18O49. The nanomaterial obtained via Na2SeSO3 solution demonstrates a high HER activity and low overpotential of -0.34 V, allowing it to deliver a current density of 10 mA cm-2.

Photoelectrochemical Hydrogen Production on Textured Silicon Photocathode

  • Oh, Il-Whan
    • 전기화학회지
    • /
    • 제14권4호
    • /
    • pp.191-195
    • /
    • 2011
  • Wet chemical etching methods were utilized to conduct Si surface texturing, which could enhance photoelectrochemical hydrogen generation rate. Two different etching methods tested, which were anisotropic metal-catalyzed electroless etching and isotropic etching. The Si nano-texture that was fabricated by the anisotropic etching showed ~25% increase in photocurrent for H2 generation. The photocurrent enhancement was attributed to the reduced reflection loss at the nano-textured Si surface, which provided a layer of intermediate density between water and the Si substrate.

Ni 전극 계면에서 전기화학적 spike 발진 (Electrochemical spike oscillation st the Ni electrode interface)

  • 천장호;손광철;라극환
    • 전자공학회논문지A
    • /
    • 제33A권12호
    • /
    • pp.83-89
    • /
    • 1996
  • The electrochemical spike oscillations at the nickel (Ni) electrode/(0.05M KHC$_{8}$H$_{4}$O$_{4}$) buffer solution (pH 9) interface have been studied using voltammetric and chronoamperometric methods. The nature of the periodic cathodic current spikes is the activation controlled currents due to the hydrogen evolution reaction and depends onthe fractioanl surface coverage of the adsorbed hydrogen intermediate or the cathodic potential. There is two kinds of the waveforms corresponding to two kinds of the cathodic current spike oscillations. The widths, periods, and amplitudes of the cathodic current spikes are 4 ms or 5ms, 151 ms or 302 ms, and < 30 mA or < 275 mA, respectively. The fast discharge and recombination reaction steps are 1.5 times and twice and faster than the slow discharge and recombination reaction steps. The fast and slow discharge and recombination reaction steps are 1.5 times and twice faster than the slow discharge and recombination reaction steps. The fast and slow discharge and recombination reactions corresponding to the fast and slow adsorption sites at the Ni cathode.

  • PDF

Selective Reduction by Lithium Bis- or Tris(dialkylamino)aluminum Hydrides. VIII. Reaction of Lithium Tripiperidinoaluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • 차진순;이재철;주영철
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권8호
    • /
    • pp.890-895
    • /
    • 1997
  • The approximate rates and stoichiometry of the reaction of excess lithium tripiperidinoaluminum hydride (LTPDA), an alicyclic aminoaluminum hydride, with selected organic compounds containing representative functional groups under the standardized conditions (tetrahydrofuran, 25°) were examined in order to define the reducing characteristics of the reagent for selective reductions. The reducing ability of LTPDA was also compared with those of the parent lithium aluminum hydride (LAH) and lithium tris(diethylamino)aluminum hydride (LTDEA), a representative aliphatic aminoaluminum hydride. In general, the reactivity of LTPDA toward organic functionalities is weaker than LTDEA and much weaker than LAH. LTPDA shows a unique reducing characteristics. Thus, benzyl alcohol, phenol and thiols evolve a quantitative amount of hydrogen rapidly. The rate of hydrogen evolution of primary, secondary and tertiary alcohols is distinctive. LTPDA reduces aldehydes, ketones, esters, acid chlorides and epoxides readily to the corresponding alcohols. Quinones, such as p-benzoquinone and anthraquinone, are reduced to the corresponding diols without hydrogen evolution. Tertiary amides and nitriles are also reduced readily to the corresponding amines. The reagent reduces nitro compounds and azobenzene to the amine stages. Disulfides are reduced to thiols, and sulfoxides and sulfones are converted to sulfides. Additionally, the reagent appears to be a good partial reducing agent to convert primary carboxamides into the corresponding aldehydes.

알칼리 수전해용 코팅 전극에 관한 연구 (Study on the Coating Electrode for the Alkaline Water Electrolysis)

  • 강민지;유철휘;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.575-580
    • /
    • 2023
  • An electrode was prepared by dip-coating NiFe2O4 powder on stainless steel (SUS) support for the application in the alkaline water electrolysis. The prepared electrode was analyzed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS), and was evaluated for the voltage properties with the change of current density in oxygen evolution reaction (OER) and hydrgen evolution reaction (HER) using 1, 3 and 7 M KOH solution. From the SEM and EDXS analysis, it was confirmed that the prepared electrode had NiFe2O4 on the SUS support. In OER and HER, the voltage in the 7 M KOH solution had a value of 1.35 and -1.90 V at 0.2 and -0.2 A/cm2 of the current density, respectively. It was considered that the prepared electrode could be use as an electrode in the alkaline water electrolysis from the experimental results.