Browse > Article
http://dx.doi.org/10.5695/JKISE.2017.50.5.322

Synthesis and Characterization of Ni4Cr Nanofiber Electrocatalyst for Hydrogen Evolution Reaction  

Lee, Jeong Hun (Surface Technology Department, Korea Institute of Materials Science)
Jang, Myeong Je (Surface Technology Department, Korea Institute of Materials Science)
Park, Yoo Sei (Surface Technology Department, Korea Institute of Materials Science)
Choi, Sung Mook (Surface Technology Department, Korea Institute of Materials Science)
Kim, Yang Do (Department of Materials Science and Engineering, Pusan National University)
Lee, Kyu Hwan (Surface Technology Department, Korea Institute of Materials Science)
Publication Information
Journal of the Korean institute of surface engineering / v.50, no.5, 2017 , pp. 322-331 More about this Journal
Abstract
Hydrogen evolution reaction(HER) was studied over $Ni_4Cr$ nanofibers(NFs) prepared by electrospinning method and oxidation/reduction heat treatment for alkaline water electrolysis. The physicochemical and electrochemical properties such as average diameter, lattice parameter, HER activity of synthesized $Ni_4Cr$ NFs could be modified by proper electrospinning process condition and reduction temperature. It was shown that $Ni_4Cr$ NFs had average diameter from 151 to 273 nm. Also, it exhibited the overpotential between 0.419 V and 0.526 V at $1mA/cm^2$ and Tafel slope of -334.75 mV to -444.55 mV per decade in 1 M KOH solution. These results indicate that $Ni_4Cr$ NFs with reduction heat treatment at $600^{\circ}C$ show thinnest diameter and highest HER activity among the other catalysts.
Keywords
Hydrogen evolution reaction (HER); Alkaline water electrolysis; Electrospinning; NiCr nanofiber;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36(3), 307-326.   DOI
2 Ursua, A., Gandia, L. M., & Sanchis, P. (2012). Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE, 100(2), 410-426.   DOI
3 Durst, J., Siebel, A., Simon, C., Hasche, F., Herranz, J., & Gasteiger, H. A. (2014). New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 7(7), 2255-2260.   DOI
4 Chen, W. F., Sasaki, K., Ma, C., Frenkel, A. I., Marinkovic, N., Muckerman, J. T., ... & Adzic, R. R. (2012). Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets. Angewandte Chemie International Edition, 51(25), 6131-6135.   DOI
5 Morales-Guio, C. G., Stern, L. A., & Hu, X. (2014). Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 43(18), 6555-6569.   DOI
6 Hu, W. (2000). Electrocatalytic properties of new electrocatalysts for hydrogen evolution in alkaline water electrolysis. International Journal of Hydrogen Energy, 25(2), 111-118.   DOI
7 Sheng, W., Myint, M., Chen, J. G., & Yan, Y. (2013). Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy & Environmental Science, 6(5), 1509-1512.   DOI
8 Deng, J., Ren, P., Deng, D., Yu, L., Yang, F., & Bao, X. (2014). Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy & Environmental Science, 7(6), 1919-1923.   DOI
9 Chen, L., & Lasia, A. (1991). Study of the Kinetics of Hydrogen Evolution Reaction on Nickel-Zinc Alloy Electrodes. Journal of The Electrochemical Society, 138(11), 3321-3328.   DOI
10 Jaksic, J. M., Vojnovic, M. V., & Krstajic, N. V. (2000). Kinetic analysis of hydrogen evolution at Ni-Mo alloy electrodes. Electrochimica Acta, 45(25), 4151-4158.   DOI
11 Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J. Z., Zhou, J., ... & Dai, H. (2013). An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc, 135(23), 8452-8455.   DOI
12 Shervedani, R. K., & Lasia, A. (1997). Studies of the Hydrogen Evolution Reaction on Ni-P Electrodes. Journal of the Electrochemical Society, 144(2), 511-519.   DOI
13 Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S., & Ko, F. K. (2002). Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of Biomedical Materials Research Part A, 60(4), 613-621.   DOI
14 Feng, L., Vrubel, H., Bensimon, M., & Hu, X. (2014). Easily-prepared dinickel phosphide (Ni 2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Physical Chemistry Chemical Physics, 16(13), 5917-5921.   DOI
15 Paseka, I. (1999). Influence of hydrogen absorption in amorphous Ni-P electrodes on double layer capacitance and charge transfer coefficient of hydrogen evolution reaction. Electrochimica acta, 44(25), 4551-4558.   DOI
16 Zhang, Z., Shao, C., Li, X., Wang, C., Zhang, M., & Liu, Y. (2010). Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS applied materials & interfaces, 2(10), 2915-2923.   DOI
17 Gorji, M., Jeddi, A., & Gharehaghaji, A. A. (2012). Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. Journal of Applied Polymer Science, 125(5), 4135-4141.   DOI
18 Leung, W. W. F., & Hung, C. H. (2012). Skin effect in nanofiber filtration of submicron aerosols. Separation and purification technology, 92, 174-180.   DOI
19 Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17(14), R89.   DOI
20 Guo, P., Zhao, G., Chen, P., Lei, B., Jiang, L., Zhang, H., ... & Liu, M. (2014). Porphyrin nanoassemblies via surfactant-assisted assembly and single nanofiber nanoelectronic sensors for high-performance H2O2 vapor sensing. ACS nano, 8(4), 3402-3411.   DOI
21 Dincer, I., & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International journal of hydrogen energy, 40(34), 11094-11111.   DOI
22 Demirbas, A., Kabli, M., Alamoudi, R. H., Ahmad, W., & Basahel, A. (2017). Renewable energy resource facilities in the Kingdom of Saudi Arabia: Prospects, social and political challenges. Energy Sources, Part B: Economics, Planning, and Policy, 12(1), 8-16.   DOI
23 Schlapbach, L., & Zuttel, A. (2001). Hydrogenstorage materials for mobile applications. Nature, 414(6861), 353-358.   DOI
24 Balat, M. (2008). Potential importance of hydrogen as a future solution to environmental and transportation problems. International journal of hydrogen energy, 33(15), 4013-4029.   DOI
25 Greiner, A., & Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(30), 5670-5703.   DOI
26 Ra, E. J., Raymundo-Pinero, E., Lee, Y. H., & Beguin, F. (2009). High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon, 47(13), 2984-2992.   DOI
27 Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnology advances, 28(3), 325-347.   DOI
28 Ramakrishna, S. (2005). An introduction to electrospinning and nanofibers. World Scientific.
29 Sill, T. J., & von Recum, H. A. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989-2006.   DOI
30 Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216.   DOI
31 Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of electrostatics, 35(2-3), 151-160.   DOI
32 Shin, S. H., Purevdorj, O., Castano, O., Planell, J. A., & Kim, H. W. (2012). A short review: Recent advances in electrospinning for bone tissue regeneration. Journal of tissue engineering, 3(1), 2041731412443530.
33 Li, X., Chen, Y., Huang, H., Mai, Y. W., & Zhou, L. (2016). Electrospun carbon-based nanostructured electrodes for advanced energy storage-a review. Energy Storage Materials, 5, 58-92.   DOI
34 Collins, G., Federici, J., Imura, Y., & Catalani, L. H. (2012). Charge generation, charge transport, and residual charge in the electrospinning of polymers: a review of issues and complications. Journal of Applied Physics, 111(4), 044701.   DOI
35 Schiffman, J. D., & Schauer, C. L. (2007). One-step electrospinning of cross-linked chitosan fibers. Biomacromolecules, 8(9), 2665-2667.   DOI
36 Schiffman, J. D., & Schauer, C. L. (2008). A review: electrospinning of biopolymer nanofibers and their applications. Polymer reviews, 48(2), 317-352.   DOI
37 Chronakis, I. S. (2005). Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-a review. Journal of Materials Processing Technology, 167(2), 283-293.   DOI
38 Aruna, S. T., Balaji, L. S., Kumar, S. S., & Prakash, B. S. (2017). Electrospinning in solid oxide fuel cells-A review. Renewable and Sustainable Energy Reviews, 67, 673-682.   DOI
39 Haider, A., Haider, S., & Kang, I. K. (2015). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry.
40 Panthi, G., Park, M., Kim, H. Y., & Park, S. J. (2015). Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: a review. Journal of Industrial and Engineering Chemistry, 24, 1-13.   DOI
41 Khoo, W., & Koh, C. T. (2015, October). A Review of Electrospinning Process and Microstructure Morphology Control. In International Conference on Mechanical and Manufacturing Engineering (ICME2015).
42 Buschow, K. H. J., Van Engen, P. G., & Jongebreur, R. (1983). Magneto-optical properties of metallic ferromagnetic materials. Journal of magnetism and magnetic materials, 38(1), 1-22.   DOI
43 Pillay, V., Dott, C., Choonara, Y. E., Tyagi, C., Tomar, L., Kumar, P., ... & Ndesendo, V. M. (2013). A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials, 2013.
44 Ray, S. S., Chen, S. S., Li, C. W., Nguyen, N. C., & Nguyen, H. T. (2016). A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Advances, 6(88), 85495-85514.   DOI
45 Tomaszewski, P. E. (2002). Golden book of phase transitions. Wroclaw, 1, 1-123.
46 Saalfeld, H. (1964). Strukturuntersuchungen im System Al2O3-Cr2O3. Zeitschrift fur Kristallographie-Crystalline Materials, 120(1-6), 342-348.   DOI
47 Kohlhaas, R., Dunner, P., & Schmitz, P. N. (1967). The temperature-dependance of the lattice parameters of iron, cobalt, and nickel in the high temperature range. Z Angew Physik, 23(4).
48 Zhang, G., Zhang, Y. C., Nadagouda, M., Han, C., O'Shea, K., El-Sheikh, S. M., ... & Dionysiou, D. D. (2014). Visible light-sensitized S, N and C co-doped polymorphic TiO 2 for photocatalytic destruction of microcystin-LR. Applied Catalysis B: Environmental, 144, 614-621.   DOI
49 Campbell, J. (2003). Castings. Butterworth-Heinemann.
50 Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology, 6(9), 534-534.   DOI
51 Mazloum-Ardakani, M., Beitollahi, H., Ganjipour, B., Naeimi, H., & Nejati, M. (2009). Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode. Bioelectrochemistry, 75(1), 1-8.   DOI
52 Lee, S. H., Tekmen, C., & Sigmund, W. M. (2005). Three-point bending of electrospun TiO 2 nanofibers. Materials Science and Engineering: A, 398(1), 77-81.   DOI
53 Kang, W., Cheng, B., Li, Q., Zhuang, X., & Ren, Y. (2011). A new method for preparing alumina nanofibers by electrospinning technology. Textile Research Journal, 81(2), 148-155.   DOI
54 Ruiz-Rosas, R., Bedia, J., Rosas, J. M., Lallave, M., Loscertales, I. G., Rodriguez-Mirasol, J., & Cordero, T. (2012). Methanol decomposition on electrospun zirconia nanofibers. Catalysis today, 187(1), 77-87.   DOI
55 Li, D., Wang, Y., & Xia, Y. (2003). Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano letters, 3(8), 1167-1171.   DOI
56 Rahim, M. A., Hameed, R. A., & Khalil, M. W. (2004). Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. Journal of power sources, 134(2), 160-169.   DOI
57 Ardakani, M. M., Taleat, Z., Beitollahi, H., Salavati-Niasari, M., Mirjalili, B. B. F., & Taghavinia, N. (2008). Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex-TiO 2 nanoparticle modified carbon paste electrode. Journal of Electroanalytical Chemistry, 624(1), 73-78.   DOI
58 Hu, J. M., Zhang, J. Q., & Cao, C. N. (2004). Oxygen evolution reaction on IrO 2-based DSA(R) type electrodes: kinetics analysis of Tafel lines and EIS. International Journal of Hydrogen Energy, 29(8), 791-797.   DOI
59 Scott, K., Cotlarciuc, I., Hall, D., Lakeman, J. B., & Browning, D. (2008). Power from marine sediment fuel cells: the influence of anode material. Journal of Applied Electrochemistry, 38(9), 1313.   DOI
60 Schultz, T., & Sundmacher, K. (2005). Rigorous dynamic model of a direct methanol fuel cell based on Maxwell-Stefan mass transport equations and a Flory-Huggins activity model: Formulation and experimental validation. Journal of power sources, 145(2), 435-462.   DOI
61 Mansfeld, F. (2005). Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corrosion Science, 47(12), 3178-3186.   DOI
62 Kapalka, A., Foti, G., & Comninellis, C. (2008). Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes. Electrochemistry Communications, 10(4), 607-610.   DOI
63 Petrii, O. A., Nazmutdinov, R. R., Bronshtein, M. D., & Tsirlina, G. A. (2007). Life of the Tafel equation: Current understanding and prospects for the second century. Electrochimica acta, 52(11), 3493-3504.   DOI
64 Gileadi, E., & Kirowa-Eisner, E. (2005). Some observations concerning the Tafel equation and its relevance to charge transfer in corrosion. Corrosion science, 47(12), 3068-3085.   DOI
65 Bockris, J. O. M., & Potter, E. C. (1952). The mechanism of hydrogen evolution at nickel cathodes in aqueous solutions. The Journal of Chemical Physics, 20(4), 614-628.   DOI
66 Bates, M. K., Jia, Q., Ramaswamy, N., Allen, R. J., & Mukerjee, S. (2015). Composite Ni/NiO-Cr2O3 catalyst for alkaline hydrogen evolution reaction. The Journal of Physical Chemistry C, 119(10), 5467-5477.   DOI