Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00857

Fabrication of Ni-Mo-based Electrocatalysts by Modified Zn Phosphating for Hydrogen Evolution Reaction  

Im, Han Seo (Department of Chemistry and Research Institute for Basic Science, Kyung Hee University)
Park, Seon Ha (Department of Chemistry and Research Institute for Basic Science, Kyung Hee University)
Ha, Hyo Jeong (Department of Chemistry and Research Institute for Basic Science, Kyung Hee University)
Lee, Sumin (Department of Chemistry and Research Institute for Basic Science, Kyung Hee University)
Heo, Sungjun (Department of Chemistry and Research Institute for Basic Science, Kyung Hee University)
Im, Sang Won (Department of Materials Science and Engineering, Seoul National University)
Nam, Ki Tae (Department of Materials Science and Engineering, Seoul National University)
Lim, Sung Yul (Department of Chemistry and Research Institute for Basic Science, Kyung Hee University)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.1, 2022 , pp. 54-62 More about this Journal
Abstract
The preparation of low-cost, simple, and scalable electrodes is crucial for the commercialization of water electrolyzers for H2 production. Herein, we demonstrate the fabrication of cathodes through Mo-modified Zn phosphating of Ni foam (NiF) for water electrolysis, which has been largely utilized in surface coating industry. In situ growth of electrocatalytically active layers in the hydrogen evolution reaction (HER) was occurred after 1 min of phosphating to form ZnNiMoPi, and subsequent thermal treatment and electrochemical activation resulted in the formation of ZnNiMoPOxHy. ZnNiMoPOxHy exhibited superior HER performance than NiF, primarily because of the increased electrochemically active surface area of ZnNiMoPOxHy compared to that of bare NiF. Although further investigations to improve the intrinsic electrochemical activity toward the HER and detailed mechanistic studies are required, these results suggest that phosphating is a promising coating method and will possibly advance the fabrication procedure of electrodes for water electrolyzers with better practical applications.
Keywords
Carbon-Neutrality; Water Splitting; Hydrogen Evolution Reaction; Ni-Mo; Zn Phosphating;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. K. Cho, A. Lim, S. Y. Lee, H. J. Kim, S. J. Yoo, Y. E. Sung, H. S. Park and J. H. Jang, J. Electrochem. Sci. Technol., 2017, 8(3), 183-196.   DOI
2 C. Y. Zhang, B. Liu, B. X. Yu, X. P. Lu, Y. Wei, T. Zhang, J. M. C. Mol and F. H. Wang, Surf. Coat. Technol., 2019, 359, 414-425.   DOI
3 S. Y. Lim, S. Park, S. W. Im, H. Ha, H. Seo and K. T. Nam, ACS Catal., 2020, 10(1), 235-244.   DOI
4 S. W. Im, H. J. Ha, K. T. Nam and S. Y. Lim, ACS Appl. Energy Mater., 2021, 4(6), 5392-5396.
5 M. M. Jaksic, Int. J. Hydrogen Energy, 2001, 26(6), 559-578.   DOI
6 J. Y. Qin, C. Xi, R. Zhang, T. Liu, P. C. Zou, D. Y. Wu, Q. J. Guo, J. Mao, H. L. Xin and J. Yang, ACS Catal., 2021, 11(8), 4486-4497.   DOI
7 L. S. Sanches, S. H. Domingues, C. E. B. Marino and L. H. Mascaro, Electrochem. Commun., 2004, 6(6), 543-548.   DOI
8 T. Wang, R. M. Jin, X. Q. Wu, J. Zheng, X. G. Li and K. Ostrikov, J. Mater. Chem. A, 2018, 6(19), 9228-9235.   DOI
9 H. M. Sun, Z. H. Yan, F. M. Liu, W. C. Xu, F. Y. Cheng and J. Chen, Adv. Mater., 2020, 32(3), 1806326.   DOI
10 Z. L. Chen, H. L. Qing, R. R. Wang and R. B. Wu, Energy Environ. Sci., 2021, 14(5), 3160-3173.   DOI
11 G. X. Cao, Z. J. Chen, H. Yin, L. Y. Gan, M. J. Zang, N. Xu and P. Wang, J. Mater. Chem. A, 2019, 7(17), 10338-10345.   DOI
12 Z. Z. Chang, L. J. Zhu, J. Zhao, P. W. Chen, D. Y. Chen and H. J. Gao, Int. J. Hydrogen Energy, 2021, 46(5), 3493-3503.   DOI
13 J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis and H. B. Gray, Energy Environ. Sci., 2011, 4(9), 3573-3583.   DOI
14 C. G. Morales-Guio, L. Liardet, M. T. Mayer, S. D. Tilley, M. Gratzel and X. L. Hu, Angew. Chem. Int. Ed., 2015, 54(2), 664-667.   DOI
15 E. H. Eladgham, D. D. Rodene, R. Sarkar, I. U. Arachchige and R. B. Gupta, ACS Appl. Nano Mater., 2020, 3(8), 8199-8207.   DOI
16 A. P. Grosvenor, M. C. Biesinger, R. S. Smart and N. S. McIntyre, Surf. Sci., 2006, 600(9), 1771-1779.   DOI
17 D. Zhou, P. P. Cheng, J. X. Luo, W. M. Xu, J. W. Li and D. S. Yuan, J. Mater. Sci., 2017, 52(24), 13909-13919.   DOI
18 M. B. Stevens, C. D. M. Trang, L. J. Enman, J. Deng and S. W. Boettcher, J. Am. Chem. Soc., 2017, 139(33), 11361-11364.   DOI
19 K. Suemori, Y. Watanabe, N. Fukuda and S. Uemura, ACS Omega, 2020, 5(22), 12692-12697.   DOI
20 R. M. Wittman, R. L. Sacci and T. A. Zawodzinski, J. Power Sources, 2019, 438, 227034.   DOI
21 S. J. Shen, Z. P. Lin, K. Song, Z. P. Wang, L. G. Huang, L. H. Yan, F. Q. Meng, Q. H. Zhang, L. Gu and W. W. Zhong, Angew. Chem. Int. Ed., 2021, 60(22), 12360-12365.   DOI
22 T. Y. Kou, S. W. Wang and Y. Li, ACS Mater. Lett., 2021, 3(2), 224-234.   DOI
23 A. Lim, M. K. Cho, S. Y. Lee, H. J. Kim, S. J. Yoo, Y. E. Sung, J. H. Jang and H. S. Park, J. Electrochem. Sci. Technol., 2017, 8(4), 265-273.   DOI