• Title/Summary/Keyword: hydrogen donors

Search Result 37, Processing Time 0.03 seconds

Hydrogen Bonding Analysis of Hydroxyl Groups in Glucose Aqueous Solutions by a Molecular Dynamics Simulation Study

  • Chen, Cong;Li, Wei Zhong;Song, Yong Chen;Weng, Lin Dong;Zhang, Ning
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2238-2246
    • /
    • 2012
  • Molecular dynamics simulations have been performed to investigate hydrogen bonding characteristics of hydroxyl groups in glucose aqueous solutions with different concentrations. The hydrogen bonding abilities and strength of different O and H atom types have been calculated and compared. The acceptor/donor efficiencies have been predicted and it has been found that: (1) O2-HO2 and O3-HO3 are more efficient intramolecular hydrogen bonding acceptors than donors; (2) O1-HO1, O4-HO4 and O6-HO6 are more efficient intramolecular hydrogen bonding donors than acceptors; (5) O1-HO1 and O6-HO6 are more efficient intermolecular hydrogen bonding acceptors than donors while hydroxyl groups O2-HO2 and O4-HO4 are more efficient intermolecular hydrogen bonding donors than acceptors. The hydrogen bonding abilities of hydroxyl groups revealed that: (1) the hydrogen bonding ability of OH2-$H_w$ is larger than that of hydroxyl groups in glucose; (2) among the hydroxyl groups in glucose, the hydrogen bonding ability of O6-HO6 is the largest and the hydrogen bonding ability of O4-HO4 is the smallest; (3) the intermolecular hydrogen bonding ability of O6-HO6 is the largest; (4) the order for intramolecular hydrogen bonding abilities (from large to small) is O2-HO2, O1-HO1, O3-HO3, O6-HO6 and O4-HO4.

Photoaddition Reactions of N-Methylthiophthalimide with $\alpha$-Silyl-n-electron Donors via Single Electron Transfer-Desilylation and Hydrogen Atom Abstraction Pathways

  • Yoon, Ung-Chan;Oh, Sun-Wha;Moon, Seong-Chul;Hyung, Tae-Gyung
    • Journal of Photoscience
    • /
    • v.9 no.1
    • /
    • pp.17-22
    • /
    • 2002
  • Studies have been conducted to explore photoaddition reactions of N-methylthiophthalimide with $\alpha$-silyl-n-electron donors Et$_2$NCH$_2$SiMe$_3$, n-PrSCH$_2$SiMe$_3$ and EtOCH$_2$SiMe$_3$. Photoaddition of $\alpha$-silyl amine Et$_2$NCH$_2$SiMe$_3$ to N-methylthiophthalimide occurs in $CH_3$CN and benzene to produce non-silicon containing adduct in which thiophthalimide thione carbon is bonded to $\alpha$-carbon of $\alpha$-silyl amine in place of the trimethylsilyl group. In contrast, photoaddition of EtOCH$_2$SiMe$_3$ to N-methylthiophthalimide generates two diastereomeric adducts in which thiophthalimide thione carbon is connected to $\alpha$-carbon of $\alpha$-silyl ether in place of u-hydrogen. Based on a consideration of the oxidation potentials of u-silyl-n-electron donors and the nature of photoadducts, mechanism for these photoadditions involving single electron transfer(SET) -desilylation and H atom abstraction pathways are proposed.

  • PDF

Hydrogen Evolution by Photosynthetic Bacteria Rhodobacter sphaeroides KS56 (광합성 세균 Rhodobacter sphaeroidea KS56에 의한 수소 생성)

  • 이은숙;권애란
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.7 no.3
    • /
    • pp.325-329
    • /
    • 1997
  • The optimum temperature and pH for growth and hydrogen evolution of the organism were observed at 30-35$^{\circ}C$, and around pH 7.0, respectively. The efficiency of various sugars and organic acids on hydrogen evolution as electron donors by the organism was examined. Among them, higher rates of hydrogen evolution were observed with sugars such as glucose or fructose and organic acids such as alate or pyruvate. From the result, it was evident that Rhodobacter sphaeroides KS56 had a great capacity of utilizing various kinds of reduced carbon compounds as electron donors.

  • PDF

Cinchona-based Sulfonamide Organocatalysts: Concept, Scope, and Practical Applications

  • Bae, Han Yong;Song, Choong Eui
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1590-1600
    • /
    • 2014
  • Cinchona-based bifunctional catalysts have been extensively employed in the field of organocatalysis due to the incorporation of both hydrogen-bonding acceptors (quinuclidine) and hydrogen-bonding donors (e.g., alcohol, amide, (thio)urea and squaramide) in the molecule, which can simultaneously activate nucleophiles and electrophiles, respectively. Among them, cinchona-derived (thio)urea and squaramide catalysts have shown remarkable application potential by using their bifurcated hydrogen bonding donors in activating electrophilic carbonyls and imines. However, due to their bifunctional nature, they tend to aggregate via inter- and intramolecular acid-base interactions under certain conditions, which can lead to a decrease in the enantioselectivity of the reaction. To overcome this self-aggregation problem of bifunctional organocatalysts, we have successfully developed a series of sulfonamide-based organocatalysts, which do not aggregate under conventional reaction conditions. Herein, we summarize the recent applications of our cinchona-derived sulfonamide organocatalysts in highly enantioselective methanolytic desymmetrization and decarboxylative aldol reactions. Immobilization of sulfonamide-based catalysts onto solid supports allowed for unprecedented practical applications in the synthesis of valuable bioactive synthons with excellent enantioselectivities.

SWNTs-catalyzed solar hydrogen production

  • Kim, Young Kwang;Khan, Gulzar;Jeong, Hye Won;Park, Hyunwoong
    • Rapid Communication in Photoscience
    • /
    • v.3 no.3
    • /
    • pp.56-58
    • /
    • 2014
  • Single-walled carbon nanotubes (SWNTs) catalyzed hydrogen production from water containing various electron donors under visible light (${\lambda}$ > 420 nm). As-received SWNTs were effective for hydrogen production, yet the effect vanished when they underwent surface chemical treatments. Upon coupling with CdSe particles, however, the surface treated SWNTs were far superior to non-treated SWNTs by a factor of ~30 for hydrogen production.

Inhibitor Design for Human Heat Shock Protein 70 ATPase Domain by Pharmacophore-based in silico Screening

  • Lee, Jee-Young;Jung, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1717-1722
    • /
    • 2008
  • The 70 kDa heat-shock protein (Hsp70) involved in various cellular functions, such as protein folding, translocation and degradation, regulates apoptosis in cancer cells. Recently, it has been reported that the green tea flavonoid (−)-epigallocatechin 3-gallate (EGCG) induces apoptosis in numerous cancer cell lines and could inhibit the anti-apoptotic effect of human Hsp70 ATPase domain (hATPase). In the present study, docking model between EGCG and hATPase was determined using automated docking study. Epi-gallo moiety in EGCG participated in hydrogen bonds with side chain of K71 and T204, and has metal chelating interaction with hATPase. Hydroxyl group of catechin moiety also participated in metal chelating hydrogen bond. Gallate moiety had two hydrogen bondings with side chains of E268 and K271, and hydrophobic interaction with Y15. Based on this docking model, we determined two pharmacophore maps consisted of six or seven features, including three or four hydrogen bonding acceptors, two hydrogen bonding donors, and one lipophilic. We searched a flavonoid database including 23 naturally occurring flavonoids and 10 polyphenolic flavonoids with two maps, and myricetin and GC were hit by map I. Three hydroxyl groups of B-ring in myricetin and gallo moiety of GC formed important hydrogen bonds with hATPase. 7-OH of A-ring in myricetin and OH group of catechin moiety in GC are hydrogen bond donors similar to gallate moiety in EGCG. From these results, it can be proposed that myricetin and GC can be potent inhibitors of hATPase. This study will be helpful to understand the mechanism of inhibition of hATPase by EGCG and give insights to develop potent inhibitors of hATPase.

Selective acetate detection using functional carbon nanotube fiber

  • Choi Seung-Ho;Lee, Joon-Seok;Choi, Won-Jun;Lee, Sungju;Jeong, Hyeon Su;Choi, Seon-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.357-363
    • /
    • 2021
  • We developed a chemiresistive anion sensor using highly conductive carbon nanotube fibers (CNTFs) functionalized with anion receptors. Mechanically robust CNTFs were prepared via wet-spinning utilizing the nematic liquid crystal properties of CNTs in chlorosulfonic acid (CSA). For anion detection, polymeric receptors composed of dual-hydrogen bond donors, including thiourea 1, squaramide 2, and croconamide 3, were prepared and bonded non-covalently on the surface of the CNTFs. The binding affinities of the anion receptors were studied using UV-vis titrations. The results revealed that squaramide 2 exhibited the highest binding affinity toward AcO-, followed by thiourea 1 and croconamide 3. This trend was consistent with the chemiresistive sensing responses toward AcO- using functional CNTFs. Selective anion sensing properties were observed that CNTFs functionalized with squaramide 2 exhibited a response of 1.08% toward 33.33 mM AcO-, while negligible responses (<0.1%) were observed for other anions such as Cl-, Br-, and NO3-. The improved response was attributed to the internal charge transfer of dual-hydrogen bond donors owing to the deprotonation of the receptor upon the addition of AcO-.

Effect of electron donor for reductive dechlorination of PCE using biobarrier (Biobarrier를 이용한 PCE의 환원적 탈염소화시 전자공여체의 영향)

  • 황보현욱;신원식;김영훈;송동익
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.391-394
    • /
    • 2003
  • The applicability of in situ microbial filter or biobarrier technology for the remediation of soil and groundwater contaminated with chlorinated solvents was investigated. The efficiency and rates of reductive dechlorination of chlorinated solvents are known to be highly dependent on hydrogen concentration. In this study, the effect of electron donors on the reductive dechlorination of PCE was investigated using vermicompost (worm casting) and peat as permeable reactive barrier medium The effect of organic acids (lactate, butyrate and benzoate), yeast extract and vitamin $B_{l2}$ on the reductive dechlorination was investigated. Compared to the control (no electron donor added), addition of electron donors stimulated the dechlorinated rate. Among the electron donor treatments, lactate/benzoate amendment exhibited the highest dechlorination rate. Since vermicompost and peat are inexpensive and biodegradable and have high sorption capacity, they could be successfully used as biobarrier media, especially when electron donors (for example, lactate/benzoate) are added.d.

  • PDF

Evidences that β-Lactose Forms Hydrogen Bonds in DMSO

  • Ko, Hyun-Sook;Shim, Gyu-Chang;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.2001-2006
    • /
    • 2005
  • Glycoproteins and glycolipids play key roles in intracellular reactions between cells and their environments at the membrane surface. For better understanding of the nature of these events, it is necessary to know threedimensional structures of those carbohydrates, involved in them. Since carbohydrates contain many hydroxyl groups which can serve both as hydrogen bond donors and acceptors, hydrogen bond is an important factor stabilizing the structure of carbohydrate. DMSO is an aprotic solvent frequently used for the study of carbohydrates because it gives detailed insight into the intramolecular hydrogen bond network. In this study, conformational properties and the hydrogen bonds in $\beta$-lactose in DMSO are investigated by NMR spectroscopy and molecular dynamics simulations. NOEs, temperature coefficients, deuterium isotope effect, and molecular dynamics simulations proved that there is a strong intramolecular hydrogen bond between O3 and HO2' in $\beta$-lactose and also OH3 in $\beta$-lactose may form an intermolecular hydrogen bond with DMSO.

Hydrogen shallow donors in ZnO and $SnO_2$ thin films prepared by sputtering methods

  • Kim, Dong-Ho;Kim, Hyeon-Beom;Kim, Hye-Ri;Lee, Geon-Hwan;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.145-145
    • /
    • 2010
  • In this paper, we report that the effects of hydrogen doping on the electrical and optical properties of typical transparent conducting oxide films such as ZnO and $SnO_2$ prepared by magnetron sputtering. Recently, density functional theory (DFT) calculations have shown strong evidence that hydrogen acts as a source of n-type conductivity in ZnO. In this work, the beneficial effect of hydrogen incorporation on Ga-doped ZnO thin films was demonstrated. It was found that hydrogen doping results a noticeable improvement of the conductivity mainly due to the increases in carrier concentration. Extent of the improvement was found to be quite dependent on the deposition temperature. A low resistivity of $4.0{\times}10^{-4}\;{\Omega}{\cdot}cm$ was obtained for the film grown at $160^{\circ}C$ with $H_2$ 10% in sputtering gas. However, the beneficial effect of hydrogen doping was not observed for the films deposited at $270^{\circ}C$. Variations of the electrical transport properties upon vacuum annealing showed that the difference is attributed to the thermal stability of interstitial hydrogen atoms in the films. Theoretical calculations also suggested that hydrogen forms a shallow-donor state in $SnO_2$, even though no experimental determination has yet been performed. We prepared undoped $SnO_2$ thin films by RF magnetron sputtering under various hydrogen contents in sputtering ambient and then exposed them to H-plasma. Our results clearly showed that the hydrogen incorporation in $SnO_2$ leads to the increase in carrier concentration. Our experimental observation supports the fact that hydrogen acting as a shallow donor seems to be a general feature of the TCOs.

  • PDF