• 제목/요약/키워드: hydrodynamic flow focusing

검색결과 9건 처리시간 0.022초

원형 모세관과 사각형 단면의 미세채널에서 3차원 수력학적 집속유동 분석 (Analysis of 3-Dimensional Hydrodynamic Focusing in Circular Capillary Tube and Rectangular Microchannel)

  • 윤성희;김경훈;김중경
    • 한국가시화정보학회지
    • /
    • 제9권2호
    • /
    • pp.21-26
    • /
    • 2011
  • Hydrodynamic focusing technique to generate focused flow has been used for flow cytometry in microfluidic devices. However, devices with circular capillary tubes made of glass are not suitable for flow visualization or optical signal detection because the rays of light are distorted at the curved interface. We devised a new acrylic chamber assembled with a pulled micropipette and a rectangular microchannel made of glass. This new channel geometry enabled us to visualize the three-dimensional (3D) flow characteristics with confocal imaging technique. We analyzed the 3D hydrodynamic focusing in a circular capillary tube and a rectangular microchannel over a practical range of flow rates, viscosities and pressure drops.

3 차원 유체역학 집속에 대한 채널 형상 및 유동 조건의 매개변수 연구 (Effects of Geometric and Flow Conditions on 3-dimensional Hydrodynamic Focusing)

  • 한경섭;김동성
    • 대한기계학회논문집B
    • /
    • 제34권1호
    • /
    • pp.61-66
    • /
    • 2010
  • 최근 본 연구그룹은 국소적인 종횡비 증가를 기반으로 수평 분리벽 없이 검체의 3 차원 집속을 구현하는 3 차원 유체역학 집속 미세유체 장치(3D-HFMD)를 제안한 바 있다. 본 논문에서는, 다양한 형상 및 유동 조건에 따른 3D-HFMD 의 3 차원 유체역학 집속 거동 영향에 대한 연구를 수행하였다. 이에 3 차원 전산유체역학(CFD) 시뮬레이션을 통해, 형상 및 유동 조건 변화에 대한 기존의 미세유체 장치와 본 연구 그룹이 제안한 3D-HFMD의 3 차원 유체역학 집속의 매개변수 연구를 수행하였다. 수행된 CFD 시뮬레이션 결과를 바탕으로 3 차원 집속을 위한 채널 형상 디자인 및 유동 조건을 제안하였다.

3-D 유체집속효과와 레이저 중합반응을 이용한 PDA 센서 미세섬유 제작 (On-Chip Fabrication of PDA Sensor Fiber Using Laser Polymerization and 3-D Hydrodynamic Focusing)

  • 유임성;송시몬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2692-2695
    • /
    • 2008
  • Polydiacetylene (PDA) is chemosensor materials that exhibit non-fluorescent-to-fluorescent transition as well as blue-to-red visible color change upon chemical or thermal stress. They have been studied in forms of film or microarray chip, so far. In this paper, we provide a novel technique to fabricate continuous micro-fiber PDA sensor using in-situ laser-polymerization technique and 3-D hydrodynamic focusing on a microfluidic chip. The flow of a monomer solution with diacetylene (DA) monomer is focused by a sheath flow on a 3-D microfluidic chip. The focused flow is exposed to 365 nm UV laser beam for in-situ polymerization which generates a continuous fiber containing DA monomers. Then, the fiber is exposed to 254 nm UV light to polymerize DA monomers to PDA. Preliminary results indicate that the fiber size can be controlled by the flow rates of the monomer solution and sheath flows and that a PDA sensor fiber successively responds to chemical and thermal stress.

  • PDF

Micro-imaging techniques for evaluation of plastic microfluidic chip

  • Kim, Jung-Kyung;Hyunwoo Bang;Lee, Yongku;Chanil Chung;Yoo, Jung-Yul;Yang, Sang-Sik;Kim, Jin-Seung;Park, Sekwang;Chang, Jun-Keun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권4호
    • /
    • pp.239-247
    • /
    • 2001
  • The Fluorescence-Activated Cell Sorter (FACS) is a well-established instrument used for identifying, enumerating, classifying and sorting cells by their physical and optical characteristics. For a miniaturized FACS device, a disposable plastic microchip has been developed which has a hydrodynamic focusing chamber using soft lithography. As the characteristics of the spatially confined sample stream have an effect on sample throughput, detection efficiency, and the accuracy of cell sorting, systematic fluid dynamic studies are required. Flow visualization is conducted with a laser scanning confocal microscopy (LSCM), and three-dimensional flow structure of the focused sample stream is reconstructed from 2D slices acquired at $1\mutextrm{m}$ intervals in depth. It was observed that the flow structure in the focusing chamber is skewed by unsymmetrical velocity profile arising from trapezoidal cross section of the microchannel. For a quantitative analysis of a microscopic flow structure, Confocal Micro-PIV system has been developed to evaluate the accelerated flow field in the focusing chamber. This study proposes a method which defines the depth of the measurement volume using a detection pinhole. The trajectories of red blood cells (RBCs) and their interactions with surrounding flow field in the squeezed sample stream are evaluated to find optimal shape of the focusing chamber and fluid manipulation scheme for stable cell transporting, efficient detection, and sorting

  • PDF

Flow Induced Material Degradation In Power Plant Secondary Systems-A Review

  • Kim, I.S.;Van Der Helm, M.;Ballinger, R.G.
    • Nuclear Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.148-163
    • /
    • 1998
  • Flow Induced Material Degradation (FIMD) is reviewed focusing on Flow Accelerated Corrosion (FAC) models. Several examples of FAC related incidents are described, which include nuclear and fossile power plants. Lastly, mitigation techniques such as inspection, material selection, water chemistry, temperature, and hydrodynamic factor are discussed.

  • PDF

Frit-Inlet Asymmetrical Flow Field-Flow Fractionation (FI-ARIFF): A Stopless Separation Technique for Macromlecules and Nanopariticles

  • 문명희
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권4호
    • /
    • pp.337-348
    • /
    • 2001
  • This article gives an overview of a recently developed channel system, frit-inlet asymmetrical flow field-flow fractionation (FI-AFlFFF), which can be applied for the separation of nanoparticles, proteins, and water soluble polymers. A conventiona l asymmetrical flow FFF channel has been modified into a frit-inlet asymmetrical type by introducing a small inlet frit near the injection point and the system operation of the FI-AFlFFF channel can be made with a great convenience. Since sample components injected into the FI-AFlFFF channel are hydrodynamically relaxed, sample injection and separation processes proceed without interruption of the migration flow. Therefore in FI-AFlFFF, there is no requirement for a valve operation to switch the direction of the migration flow that is normally achieved during the focusing/relaxation process in a conventional asymmetrical channel. In this report, principles of the hydrodynamic relaxation in FI-AFlFFF channel are described with equations to predict the retention time and to calculate the complicated flow variations in the developed channel. The retention and resolving power of FI-AFlFFF system are demonstrated with standard nanospheres and protreins. An attempt to elucidate the capability of FI-AFlFFF system for the separation and size characterization of nanoparticles is made with a fumed silica particle sample. In FI-AFlFFF, field programming can be easily applied to improve separation speed and resolution for a highly retaining component (very large MW) by using flow circulation method. Programmed FI-AFlFFF separations are demonstrated with polystyrene sulfonate standards and pululans and the dynamic separation range of molecular weight is successfully expanded.

Large scale flood inundation of Cambodia, using Caesar lisflood

  • Sou, Senrong;Kim, Joo-Cheol;Lee, Hyunsoek;Ly, Sarann;Lee, Giha;Jung, Kwansue
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.211-211
    • /
    • 2015
  • Mekong River is the world's $10^{th}$ longest river and runs through China's Yunnan province, Burma, Thailand, Laos, Cambodia and Vietnam. And Tonle Sap Lake, the largest fresh water body in Southeast Asia and the heart of Mekong River system, covers an area $2,500-3,000Km^2$ in dry season and $10,000-16,000Km^2$ in wet season. As previously noted, the water within Sap river flows from the Mekong River to Tonle Sap Lake in flood season (between June and October) and backward to Mekong River in dry season. Recently the flow regime of Sap River might be significantly affected by the development of large dams in upstream region of Mekong River. This paper aims at basic study about the large scale flood inundation of Cambodia using by CAESAR-Lisflood. CAESAR-Lisflood is a geomorphologic / Landscape evolution model that combines the Lisflood-FP 2d hydrodynamic flow model (Bates et al, 2010) with the CAESAR geomorphic model to simulate flow hydrograph and erosion/deposition in river catchments and reaches over time scales from hours to 1000's of years. This model is based on the simplified full Saint-Venant Equation so that it can simulate the interacted flow of between Mekong River and Tonle Sap Lake especially focusing on the flow direction change of Sap River by season.

  • PDF

3D Numerical Modelling of Water Flow and Salinity Intrusion in the Vietnamese Mekong Delta

  • Lee, Taeyoon;Nguyen, Van Thinh
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.207-207
    • /
    • 2021
  • The Vietnamese Mekong Delta(VMD) covers an area of 62,250 km2 in the lowest basin of the Mekong Delta where more than half of the country's total rice production takes place. In 2016, an estimated 1.29 million tonnes of Vietnam's rice were lost to the country's biggest drought in 90 year and particularly in VMD, at least 221,000 hectares of rice paddies were hit by the drought and related saltwater intrusion from the South China Sea. In this study, 3D numerical simulations using Delft3D hydrodynamic models with calibration and validation process were performed to examine flow characteristics, climate change scenarios, water level changes, and salinity concentrations in the nine major estuaries and coastal zones of VMD during the 21st century. The river flows and their interactions with ocean currents were modeled by Delft3D and since the water levels and saltwater intrusion in the area are sensitive to the climate conditions and upstream dam operations, the hydrodynamic models considered discharges from the dams and climate data provided by the Coupled Model Intercomparison Project Phase 6(CMIP6). The models were calibrated and verified using observational water levels, salinity distribution, and climate change data and scenarios. The results agreed well with the observed data during calibration and validation periods. The calibrated models will be used to make predictions about the future salinity intrusion events, focusing on the impacts of sea level rise due to global warming and weather elements.

  • PDF

전기 저항법을 이용한 Micro Particle Counter Micro Fluidic Device 개발

  • 이준;윤덕원;채호철;한창수
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2005년도 춘계 학술대회
    • /
    • pp.134-138
    • /
    • 2005
  • Recently many researches related with biotechnology are processed and it is the situation that research about micro fluidic devices is active. Micro fluidic devices has been one of the most widely used devices for the analysis in biotechnology because they have many advantages, flexibility, transparency, thermal and electrical stability, nontoxic, etc. In this study, micro fluidic device with PDMS is developed for particle counter which separates a small quantity of particles, The principle of micro particle counter is electrical-impedance method, and it was also applied hydrodynamic flow focusing. It is more efficient method to analyzing particles furthermore it can be applied to cell count ins for biotechnology.

  • PDF