• Title/Summary/Keyword: hydraulic transients

Search Result 54, Processing Time 0.023 seconds

A Study on Dynamic Characteristics of Hydraulic Transmission Line by Finite Difference Method (有限差分法을 利용한 油壓管路의 特性에 관한 硏究)

  • 오철환;정선국;송창섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.15-24
    • /
    • 1986
  • Pressure trasients must deal with safety problem of system. For identification of physical situation that can and method of limiting surges are essential consideration in sucessful design. The finite difference equation by method of characteristics are derived from the governing equation of unsteady flow in a pipe, and solved by using boundary condition derived. A computer program which can simulate general hydraulic system is developed by using finite difference equations and boundary conditions derived. The sumulated resulted by developed computer program are in fair agreement with experiment result.

Modeling of the Liquid Rocket Engine Transients (액체로켓엔진 천이작동 예측을 위한 동특성 모델링)

  • Ko, Tae-Ho;Jeong, Yu-Shin;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • A program aiming at predicting dynamic characteristics of a Liquid Rocket Engine(LRE) was developed and examined to trace entire LRE operation. In the startup period, transient characteristics of the propellant flows were predicted and validated with hydraulic tests data. An arrangement of each component for the pipelines was based on an operating circuit of open cycle LRE. The flow rate ratio for the gas generator and the main chamber was determined to mimic that of real open cycle LRE. Individual component modeling at its transient was completed and was integrated into the system prediction program. Essential parameters of the component dynamic characteristics were examined in an integrated fashion.

Development of a System Analysis Code, SSC-K, for Inherent Safety Evaluation of The Korea Advanced Liquid Metal Reactor

  • Kwon, Young-Min;Lee, Yong-Bum;Chang, Won-Pyo;Dohee Hahn;Kim, Kyung-Doo
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.209-224
    • /
    • 2001
  • The SSC-K system analysis code is under development at the Korea Atomic Energy Research Institute (KAERI) as a part of the KALIMER project. The SSC-K code is being used as the principal tool for analyzing a variety of off-normal conditions or accidents of the preliminary KALIMER design. The SSC-K code features a multiple-channel core representation coupled with a point kinetics model with reactivity feedback. It provides a detailed, one-dimensional thermal-hydraulic simulation of the primary and secondary sodium coolant circuits, as well as the balance-of-plant steam/water circuit. Recently a two-dimensional hot pool model was incorporated into SSC-K for analysis of thermal stratification phenomena in the hot pool. In addition, SSC-K contains detailed models for the passive decay heat removal system and a generalized plant control system. The SSC-K code has also been applied to the computational engine for an interactive simulation of the KALIMER plant. This paper presents an overview of the recent activities concerned with SSC-K code model development This paper focuses on both descriptions of the newly adopted thermal hydraulic and neutronic models, and applications to KALIMER analyses for typical anticipated transients without scram.

  • PDF

Development of a Dedicated Model for a Real-Time Simulation of the Pressurizer Relief Tank of the Westinghouse Type Nuclear Power Plant (웨스팅하우스형 원자력발전소 가압기 방출 탱크의 실시간 시뮬레이션을 위한 전문모델 개발)

  • 서재승;전규동
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.2
    • /
    • pp.13-21
    • /
    • 2004
  • The thermal-hydraulic model ARTS which was based on the RETRAN-3D code adopted in the domestic full-scope power plant simulator which was provided in 1998 by KEPRI. Since ARTS is a generalized code to model the components with control volumes, the smaller time-step size should be used even if converged solution could not get in a single volume. Therefore, dedicated models which do not force to reduce the time-step size are sometimes more suitable in terms of a real-time calculation and robustness. In the case of PRT(Pressurizer Relief Tank) model, it is consist of subcooled water in bottom and non-condensable gas in top. The sparger merged under subcooled water enhances condensation. The complicated thermal-hydraulic phenomena such as condensation, phase separation with existence of non-condensable gas makes difficult to simulate. Therefore, the PRT volume can limit the time-step size if we model it with a general control volume. To prevent the time-step size reduction due to convergence failure for simulating this component, we developed a dedicated model for PRT. The dedicated model was expected to provide substantially more accurate predictions in the analysis of the system transients. The results were resonable in terms of accuracy, real-time simulation, robustness and education of operators, complying with the ANSI/ANS-3.5-1998 simulator software performance criteria and RETRAN-3D results.

  • PDF

MNSR transient analysis using the RELAP5/Mod3.2 code

  • Dawahra, S.;Khattab, K.;Alhabit, F.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1990-1997
    • /
    • 2020
  • To support the safe operation of the Miniature Neutron Source Reactor (MNSR), a thermo-hydraulic transient model using the RELAP5/Mod3.2 code was simulated. The model was verified by comparing the results with the measured and the previously calculated data. The comparisons consisted of comparing the MNSR parameters under normal constant power operation and reactivity insertion transients. Reactivity Insertion Accident (RIA) for three different initial reactivity values of 3.6, 6.0, and 6.53 mk have been simulated. The calculated peaks of the reactor power, fuel, clad and coolant temperatures in hot channel were calculated in this model. The reactor power peaks were: 103 kW at 240 s, 174 kW at 160 s and 195 kW at 140 s, respectively. The fuel temperature reached its maximum value of 116 ℃ at 240 s, 124 ℃ at 160 s and 126 ℃ at 140 s respectively. These calculation results ensured the high inherently safety features of the MNSR under all phases of the RIAs.

A Study on Valve-Induced Water Hammer Characteristics for Large Pump System (밸브에 의한 대형펌프시스템의 수격특성에 관한 연구)

  • Lee, C.J.;Lim, K.S.;Cho, D.H.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2009.06a
    • /
    • pp.177-178
    • /
    • 2009
  • Hydraulic Transients would be occurred since pressure is increased or decreased when water speed inside of pipeline is rapidly changed A study on water hammer has become more important because the pumping stations were big and the systems conveying the fluid through the large and long transmission pipelines were complex. In this study, the method of characteristic line was adopted to evaluate the valve-induced water hammer phenomena in a pumps feedwater system.

  • PDF

Numerical Analysis of Water Hammer in Condenser Cooling Water Systems (콘덴서 냉각수 계통내의 수격현상 에 관한 수치해석)

  • 장효환;정회범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.638-646
    • /
    • 1985
  • Water hammering in nuclear or thermal power plant condenser cooling water systems in mathematically modeled and numerically analyzed based on the method of characteristics. Effects of variations of the discharge valve operating condition and the system geometry on the hydraulic transients are investigated for the cases when all or one of four pumps are tripped accidently due to loss of offisite power. Effects of ocean waves and tides on the steady-state and the transient operations are also studied. Water column separation in taken into account whenever necessary by means of a simplified physical model.

Waterhammer for In-line Booster Pump (직결식 펌프의 수격현상)

  • Kim, Sang-Gyun;Lee, Gye-Bok;Kim, Kyung-Yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.6 s.33
    • /
    • pp.7-14
    • /
    • 2005
  • The waterhammer occur when the pumps are started or stopped for the operation or tripped due to the power failure, and the hydraulic transients take place as a result of the sudden change in velocity. Several times, the field tests of the waterhammer were carried out for Pangyo booster pumping station. Pangyo pumping station was installed with the booster pumps of 6 sets and the in-line pumps of 2 sets. The in-line pumps are additionally needed to the surge suppression device so that the pumping station acquire the safety and reliability for the pressure surge.

Study on Waterhammer Analysis (수격작용(워터햄머)의 해석에 관한 연구)

  • 남선우
    • Water for future
    • /
    • v.12 no.2
    • /
    • pp.49-55
    • /
    • 1979
  • The purpose of this study is to develope the computer program to compute the unsteady, transient flow conditions in a hydraulic system. The unstready flow condition may be brought about due to power failure to pump motors, pump start-up or modulation of control valve. The program was written specially for analyzing the water-hammer in the pumping system. The pumping system which can be simulated by the program can contain pipelines, tunnel, surge tanks, branched lines, reservoirs, dead end pipes and valve controls. The use of a computer program to analyze haydranlic transients is of great benifit to the designers of transmission main and distribution systems. Advantages include time savings, the ability to analyze complex piping systems, and increased accuracy. The author outlines a pogram developed for the above system.

  • PDF

Waterhammer in Transmission Pumping Station with Ball Valve (볼밸브를 사용한 송수펌프장에서의 수격현상)

  • Kim, Kyung-Yup;Kim, Joum-Bea
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1697-1702
    • /
    • 2004
  • The waterhammer has recently become more important because the pumping stations were big and the systems conveying the fluid through the large and long transmission pipelines were complex. When the pumps are started or stopped for the operation or tripped due to the power failure. the hydraulic transients occur as a result of the sudden change in velocity. In this paper, the field tests on the waterhammer by the startup, stoppage, and power failure of a centrifugal pump were carried out for Yongma transmission pumping station in Seoul. The experimental results were compared with that of the numerical calculations. in which results the procedure of controlled pump normal shut-down and the two-step closing mode of controlling the ball valve for pump emergency stop are proposed to reduce the pressure surge.

  • PDF