• 제목/요약/키워드: hydraulic parameter

검색결과 430건 처리시간 0.024초

Gamma 분포모델에 의한 하천유량의 Simulation에 관한 연구 (Stochastic Simulation of Monthly Streamflow by Gamma Distribution Model)

  • 이중석;이순택
    • 물과 미래
    • /
    • 제13권4호
    • /
    • pp.41-50
    • /
    • 1980
  • 본 연구는 Gamma 분포의 이론적 검토와 이의 수공학에의 적용, 즉 Gamma 분포의 적합성 및 Gamma 모델에 의한 하천유량의 Simulation에 대한 연구와 검토를 행하는데 그 목적을 두고 있다. 분석에 있어서 우리나라 주요하천(낙동강, 한강 및 금강)의 월유량자료를 사용하였으며 분석을 간단하게 하기 위하여 자료를 Modular coefficient로 변환시켰다. 먼저 이변수 Gamma 분포형에 대한 월류량에의 적합성을 검정하였으며 이로부터 Gamma 분포형과 Monto Carlo 기법을 기초로 한 Gamma 모델에 의하여 월류량의 Simulation을 행하였다. 그 결과 기록치와 매우 근접한 Simulation 자료를 얻을 수 있었다.

  • PDF

유전자 알고리즘을 이용한 확률강우강도식의 산정 (Derivation of Probable Rainfall Intensity Formula Using Genetic Algorithm)

  • 나창진;김중훈;이은태;안원식
    • 한국방재학회 논문집
    • /
    • 제1권1호
    • /
    • pp.103-115
    • /
    • 2001
  • 현재 소규모 유역에서의 수공구조물의 설계시 확률강우강도식을 사용하여 강우량을 산정하는 것이 일반적인 적용방법으로 이용되어지고있다. 확률강우의 산정은 그 자체로서 불확실성을 많이 내포하고 있으나 현실적으로 강우의 비선형성을 해석함에 있어 단순화는 배제 할 수 없는 필요사항이다. 따라서 본 연구에서는 확률강우량 산정을 위한 강우강도식의 산정에 있어서 그 비선형성을 잘 모의할 수 있는 방법에 관하여 연구하여 보았다. 연구결과에 의하면 유전자 알고리즘이 시산법이나 비선형계획법의 일종인 Powell 기법에 비하여 더 신뢰성 높은 방법임을 알 수 있었다.

  • PDF

Photocatalytic Oxidation of Indoor Air Volatile Organic Compounds (VOCs) in pub Level

  • Jo, Wan-Kuen;Kim, Dong-Hyun;Ki, Jae-Chang;Huh, Jeung-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제19권E4호
    • /
    • pp.157-168
    • /
    • 2003
  • This study evaluated the technical feasibility of the application of titanium oxide (TiO$_2$) photocatalysis for the removal of VOCs in low ppb concentrations commonly associated with non -occupational indoor air quality issues. A series of experiments were conducted to evaluate four parameters (relative humidity (RH), hydraulic diameter (HD), photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) for the PCO destruction efficiencies of the selected target VOCs. None of the target VOCs presented significant dependency on the RH, which is inconsistent with a few previous studies. However, it is noted that the three parameters (HD, RM and IPS) should be considered for better VOCs removal efficiencies for the application of TiO$_2$ photocatalytic technology for cleansing non -occupational indoor air. The PCO destruction of VOCs at concentrations associated with non-occupational indoor air quality issues can be up to nearly 100%. The amount of CO generated during PCO would be negligible in comparison to the indoor CO levels. These results can make the PCO reactor an important tool in the effort to improve non-occupational indoor air quality.

1차원 수질 예측 모형의 검보정 자동화 시스템 개발 및 낙동강에서의 적용 (Development of 1-Dimensional Water Quality Model Automatizing Calibration-Correction and Application in Nakdong River)

  • 손아롱;한건연;박경옥;김병현
    • 환경영향평가
    • /
    • 제20권5호
    • /
    • pp.765-777
    • /
    • 2011
  • According to the total pollution load management system, exact prediction and analysis of water quality and discharge has been required in order to allocate the amount of pollution load to each local government. In this study, QUAL2E model was used for comparison with other water quality models and improve the inadequate to forecast future water quality. And Various calibration and verification methods were applied to deal with existing uncertainties of parameter during modeling water quality. For user convenience, A GUI(Graphical User Interface) system named "QL2-XP" model is developed by object-oriented language for the user convenience and practical usage. Suggested GUI system consist of hydraulic analysis, water quality analysis, optimized model calibration processes, and postprocessing the simulation results. Therefore this model will be effectively utilized to manage practical and efficient water quality.

하천 및 습지에서 유한요소 해석시 마름/젖음 처리를 위한 매개변수 평가 (Parameter Assessment for the Simulation of Drying/Wetting in Finite Element Analysis in River and Wetland)

  • 최승용;한건연;김병현;김상호
    • 환경영향평가
    • /
    • 제18권6호
    • /
    • pp.331-346
    • /
    • 2009
  • The serious problem facing two-dimensional finite element hydraulic model is the treatment of wet and dry areas. This situation is encountered in most practical river and coastal engineering problems, such as flood propagation, dam break analysis and so on. Especially, dry areas result in mathematical complications and require special treatment. The objective of this study is to investigate the wet and dry parameters that have direct relevance to model performance in situations where inundation of initially dry areas occurs. Several numerical simulations were carried out, which examined the performance of the marsh porosity method of RMA-2 model to investigate for application of parameters. Experimental channel with partly dry side slopes, straight channel with irregular geometry and Han river were performed for tests. As a result of this study, effectively applied marsh porosity method provide a reliable results for flow distribution of wet and dry area, it could be further developed to basis for extending to water quality and sediment transport analysis.

변형률속도를 고려한 상온 나노임프린트 공정의 유한요소해석 (Finite Element Analysis of the Room Temperature Nanoimprint Lithography Process with Rate-Dependent Plasticity)

  • 송정한;김승호;;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.63-66
    • /
    • 2005
  • Nanoimprint lithography (NIL) process at room temperature has been newly proposed in recent years to overcome the shape accuracy and sticking problem induced in a conventional NIL process. Success of the room temperature NIL relies on the accurate understand of the mechanical behavior of the polymer. Since a conventional NIL process has to heat a polymer above the glass transition temperature to deform the physical shape of the polymer with a mold pattern, viscoelastic property of polymer have major effect on the NIL process. However, rate dependent behavior of polymer is important in the room temperature NIL process because a mold with engraved patterns is rapidly pressed onto a substrate coated with the polymer by the hydraulic equipment. In this paper, finite element analysis of the room temperature NIL process is performed with considering the strain rate dependent behavior of the polymer. The analyses with the variation of imprinting speed and imprinting pattern are carried out in order to investigate the effect of such process parameters on the room temperature NIL process. The analyses results show that the deformed shape and imprint force is quite different with the variation of punch speed because the dynamic behavior of the polymer is considered with the rate dependent plasticity model. The results provide a guideline for the determination of process conditions in the room temperature NIL process.

  • PDF

중력여과 방식의 MBR을 이용한 하수처리에서 HRT 변화에 따른 EPS의 거동과 막오염에 대한 영향 (Behavior and Influence of EPS on Membrane Fouling by Changing of HRT in MBR with Gravitational Filtration)

  • 김시원;곽성진;이의신;홍승모;민경석
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.865-870
    • /
    • 2006
  • The behavior and influence of EPS on membrane fouling by changing of hydraulic retention time was investigated, using lab. scale submerged membrane bio-reactor, which was operated with gravitational filtration and fed supernatant of primary sedimentation in waste water treatment plant as influent. The membrane was adopted micro-filter of polyethylene hollow fiber. EPS was analysed as polysaccharides and protein especially, into soluble and bound EPS separately. The concentration of soluble EPS was increased at short HRT, then membrane fouling was rapidly progressed and flux was depressed. The most of EPS clogged membrane pore were polysaccharides, while protein was important parameter affected on membrane fouling because of it's more accumulating in the more term operating.

인공습지를 이용한 하구담수호 유입하천수의 4년간 실험결과 분석 (Analysis of 4-year experimental data from water quality improvement of inflow stream in estuary using wetland)

  • 김형철;윤춘경;한정윤;이새봄;신현범
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.557-562
    • /
    • 2005
  • The field scale experiment was performed to examine the effect of plant coverage on the constructed wetland performance and recommend the optimum development and management of macrophyte communities. Four sets(each set of 0.88ha) of wetland (0.8ha) and pond(0.08ha) systems were used. Water flowing into the Seokmoon estuarine reservoir from the Dangjin stream was pumped into wetland system. Water depth was maintained at $0.3{\sim}0.5m$ and hydraulic retention time was managed to about $2{\sim}5$ days; emergent plants were allowed to grow in the wetlands. After three growing seasons of the construction of wetlands, plant coverage was about 95%, even with no plantation, from bare soil surfaces at the initial stage. Dead vegetation affected nitrogen removal during winter because it is a source of organic carbon which is an essential parameter in denitrification. Biomass harvesting is not a realistic management option for most constructed wetland systems because it could only slightly increase the removal rate and provide a minor nitrogen removal pathway due to lack of organic carbon.

  • PDF

SWAT모형의 시단위 및 일단위 유출 모의성능 비교 (Comparison of Hourly and Daily SWAT Results for the Evaluation of Runoff Simulation Performance)

  • 장선숙;김성준
    • 한국농공학회논문집
    • /
    • 제58권5호
    • /
    • pp.59-69
    • /
    • 2016
  • This study aims to evaluate the Soil and Water Assessment Tool (SWAT) hourly hydrological modeling performance and compare it with daily SWAT modeling parameters. For the Byeolmicheon catchment ($1.17km^2$) located in the upstream of Gyeongancheon watershed and total 18 storm events measured during 3 years (2011-2013), the hourly SWAT was calibrated and validated using the Green and Ampt (G&A) infiltration equation. The determination coefficient ($R^2$) and Nash-Sutcliffe model efficiency (NSE) of hourly SWAT discharge were 0.81 and 0.73 respectively, and the most sensitive parameter was soil saturated hydraulic conductivity (SOL_K) and calibrated with the average value of 0.075 mm/hr. In addition, the hourly SWAT simulation by G&A was compared with the daily SWAT simulation by SCS-CN (Soil Conservation Service-Curve Number) method for the whole 3 years period. The houlrly G&A results showed $R^2$ and NSE of 0.71 and 0.50, and the daily SCS-CN results were 0.71 and 0.66, respectively. The SOL_K by daily SCS_CN method was calibrated at 75.5 mm/hr, 1,000 times greater than the hourly G&A method. The next sensitive parameters for the hourly simulation were lag time of lateral flow (LAT_TIME) and lag time of surface runoff (SURLAG).

A CHARACTERISTICS-BASED IMPLICIT FINITE-DIFFERENCE SCHEME FOR THE ANALYSIS OF INSTABILITY IN WATER COOLED REACTORS

  • Dutta, Goutam;Doshi, Jagdeep B.
    • Nuclear Engineering and Technology
    • /
    • 제40권6호
    • /
    • pp.477-488
    • /
    • 2008
  • The objective of the paper is to analyze the thermally induced density wave oscillations in water cooled boiling water reactors. A transient thermal hydraulic model is developed with a characteristics-based implicit finite-difference scheme to solve the nonlinear mass, momentum and energy conservation equations in a time-domain. A two-phase flow was simulated with a one-dimensional homogeneous equilibrium model. The model treats the boundary conditions naturally and takes into account the compressibility effect of the two-phase flow. The axial variation of the heat flux profile can also be handled with the model. Unlike the method of characteristics analysis, the present numerical model is computationally inexpensive in terms of time and works in a Eulerian coordinate system without the loss of accuracy. The model was validated against available benchmarks. The model was extended for the purpose of studying the flow-induced density wave oscillations in forced circulation and natural circulation boiling water reactors. Various parametric studies were undertaken to evaluate the model's performance under different operating conditions. Marginal stability boundaries were drawn for type-I and type-II instabilities in a dimensionless parameter space. The significance of adiabatic riser sections in different boiling reactors was analyzed in detail. The effect of the axial heat flux profile was also investigated for different boiling reactors.