• Title/Summary/Keyword: hybrid numerical method

Search Result 556, Processing Time 0.025 seconds

Noise Analysis of Intake System by Hybrid Method (하이브리드 방법을 이용한 배기계 소음 해석)

  • 이장명;한성수;임학종
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.310-316
    • /
    • 1999
  • 4-Pole parameter method based on an acoustic theory is very popular for the analysis of the acoustic behavior of the car exhaust system. However, this method is applicable only for the simple shape of acoustic elements of the muffler. Numerical methods such as FEM(Finite Element Method) or BEM(Boundary Element Method) can also provide acceptable results for the acoustic analysis of the car exhaust system. Even though these numerical methods have benefits for the analysis of complicated shape of acoustic elements of the muffler, time consuming is another problem during modeling and numerical calculation. Combining benefits of both methods, the new code called the hybrid method for car exhaust system is introduced. And the developed code is utilized for calculation of the transmission loss of a main muffler of an automobile comparing with the experimental results.

  • PDF

A developed hybrid method for crack identification of beams

  • Vosoughi, Ali.R.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.401-414
    • /
    • 2015
  • A developed hybrid method for crack identification of beams is presented. Based on the Euler-Bernouli beam theory and concepts of fracture mechanics, governing equation of the cracked beams is reformulated. Finite element (FE) method as a powerful numerical tool is used to discritize the equation in space domain. After transferring the equations from time domain to frequency domain, frequencies and mode shapes of the beam are obtained. Efficiency of the governed equation for free vibration analysis of the beams is shown by comparing the results with those available in literature and via ANSYS software. The used equation yields to move the influence of cracks from the stiffness matrix to the mass matrix. For crack identification measured data are produced by applying random error to the calculated frequencies and mode shapes. An objective function is prepared as root mean square error between measured and calculated data. To minimize the function, hybrid genetic algorithms (GAs) and particle swarm optimization (PSO) technique is introduced. Efficiency, Robustness, applicability and usefulness of the mixed optimization numerical tool in conjunction with the finite element method for identification of cracks locations and depths are shown via solving different examples.

A Study on a VOF Method for the Improvement of Free Surface Capturing (VOF 법의 자유수면 포착정도 향상을 위한 연구)

  • Park, Il-Ryong;Kim, Wu-Joan;Kim, Jin;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.88-97
    • /
    • 2005
  • A new numerical scheme solving two-phase flow, the Hybrid VOF method for improved free surface capturing has been developed by combining a volume capturing VOF method with the Level-Set reinitialization procedure. For validation, the proposed method is applied to 3-D bubble rising problem, dam breaking and the free surface flow around a commercial container ship. The calculated results by using the Hybrid VOF method with the two previously applied VOF formulations are compared with available numerical and experimental data. It is found that the new method provides more reasonable results than the two previous ones.

AN EFFICIENT HYBRID NUMERICAL METHOD FOR THE TWO-ASSET BLACK-SCHOLES PDE

  • DELPASAND, R.;HOSSEINI, M.M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.93-106
    • /
    • 2021
  • In this paper, an efficient hybrid numerical method for solving two-asset option pricing problem is presented based on the Crank-Nicolson and the radial basis function methods. For this purpose, the two-asset Black-Scholes partial differential equation is considered. Also, the convergence of the proposed method are proved and implementation of the proposed hybrid method is specifically studied on Exchange and Call on maximum Rainbow options. In addition, this method is compared to the explicit finite difference method as the benchmark and the results show that the proposed method can achieve a noticeably higher accuracy than the benchmark method at a similar computational time. Furthermore, the stability of the proposed hybrid method is numerically proved by considering the effect of the time step size to the computational accuracy in solving these problems.

Numerical Solution of Nonlinear Diffusion in One Dimensional Porous Medium Using Hybrid SOR Method

  • Jackel Vui Lung, Chew;Elayaraja, Aruchunan;Andang, Sunarto;Jumat, Sulaiman
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.699-713
    • /
    • 2022
  • This paper proposes a hybrid successive over-relaxation iterative method for the numerical solution of a nonlinear diffusion in a one-dimensional porous medium. The considered mathematical model is discretized using a computational complexity reduction scheme called half-sweep finite differences. The local truncation error and the analysis of the stability of the scheme are discussed. The proposed iterative method, which uses explicit group technique and modified successive over-relaxation, is formulated systematically. This method improves the efficiency of obtaining the solution in terms of total iterations and program elapsed time. The accuracy of the proposed method, which is measured using the magnitude of absolute errors, is promising. Numerical convergence tests of the proposed method are also provided. Some numerical experiments are delivered using initial-boundary value problems to show the superiority of the proposed method against some existing numerical methods.

ACCELERATED HYBRID ALGORITHMS FOR NONEXPANSIVE MAPPINGS IN HILBERT SPACES

  • Baiya, Suparat;Ungchittrakool, Kasamsuk
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.553-568
    • /
    • 2022
  • In this paper, we introduce and study two different iterative hybrid projection algorithms for solving a fixed point problem of nonexpansive mappings. The first algorithm is generated by the combination of the inertial method and the hybrid projection method. On the other hand, the second algorithm is constructed by the convex combination of three updated vectors and the hybrid projection method. The strong convergence of the two proposed algorithms are proved under very mild assumptions on the scalar control. For illustrating the advantages of these two newly invented algorithms, we created some numerical results to compare various numerical performances of our algorithms with the algorithm proposed by Dong and Lu [11].

A numerical solution for a finite internally cracked plate using hybrid crack element method

  • Chen, Y.Z.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.813-827
    • /
    • 2011
  • This paper provides a numerical solution for a finite internally cracked plate using hybrid crack element method (HCE). In the formulation, an inclined crack is placed in any place of a rectangular element and the complex variable method is used. The complex potentials are expressed in a series form, and several undetermined coefficients are involved. The complex potentials for the cracked rectangle are first suggested in this paper. Based on a variational principle, the element stiffness matrix can be evaluated. The next steps are same as in the usual finite element method. Several numerical examples with computed stress intensity factor and T-stress are presented.

A hybrid inverse method for small scale parameter estimation of FG nanobeams

  • Darabi, A.;Vosoughi, Ali R.
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1119-1131
    • /
    • 2016
  • As a first attempt, an inverse hybrid numerical method for small scale parameter estimation of functionally graded (FG) nanobeams using measured frequencies is presented. The governing equations are obtained with the Eringen's nonlocal elasticity assumptions and the first-order shear deformation theory (FSDT). The equations are discretized by using the differential quadrature method (DQM). The discretized equations are transferred from temporal domain to frequency domain and frequencies of the nanobeam are obtained. By applying random error to these frequencies, measured frequencies are generated. The measured frequencies are considered as input data and inversely, the small scale parameter of the beam is obtained by minimizing a defined functional. The functional is defined as root mean square error between the measured frequencies and calculated frequencies by the DQM. Then, the conjugate gradient (CG) optimization method is employed to minimize the functional and the small scale parameter is obtained. Efficiency, convergence and accuracy of the presented hybrid method for small scale parameter estimation of the beams for different applied random error, boundary conditions, length-to-thickness ratio and volume fraction coefficients are demonstrated.

FINITE DIFFERENCE METHOD FOR THE TWO-DIMENSIONAL BLACK-SCHOLES EQUATION WITH A HYBRID BOUNDARY CONDITION

  • HEO, YOUNGJIN;HAN, HYUNSOO;JANG, HANBYEOL;CHOI, YONGHO;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • In this paper, we develop an accurate explicit finite difference method for the two-dimensional Black-Scholes equation with a hybrid boundary condition. In general, the correlation term in multi-asset options is problematic in numerical treatments partially due to cross derivatives and numerical boundary conditions at the far field domain corners. In the proposed hybrid boundary condition, we use a linear boundary condition at the boundaries where at least one asset is zero. After updating the numerical solution by one time step, we reduce the computational domain so that we do not need boundary conditions. To demonstrate the accuracy and efficiency of the proposed algorithm, we calculate option prices and their Greeks for the two-asset European call and cash-or-nothing options. Computational results show that the proposed method is accurate and is very useful for nonlinear boundary conditions.

Efficient geometric nonlinear analyses of circular plate bending problems

  • Duan, Mei
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.405-420
    • /
    • 2005
  • In this paper, a hybrid/mixed nonlinear shell element is developed in polar coordinate system based on Hellinger/Reissner variational principle and the large-deflection theory of plate. A numerical solution scheme is formulated using the hybrid/mixed finite element method (HMFEM), in which the nodal values of bending moments and the deflection are the unknown discrete parameters. Stability of the present element is studied. The large-deflection analyses are performed for simple supported and clamped circular plates under uniformly distributed and concentrated loads using HMFEM and the traditional displacement finite element method. A parametric study is also conducted in the research. The accuracy of the shell element is investigated using numerical computations. Comparisons of numerical solutions are made with theoretical results, finite element analysis and the available numerical results. Excellent agreements are shown.