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ABSTRACT. In this paper, an efficient hybrid numerical method for solving two-asset option
pricing problem is presented based on the Crank-Nicolson and the radial basis function meth-
ods. For this purpose, the two-asset Black-Scholes partial differential equation is considered.
Also, the convergence of the proposed method are proved and implementation of the proposed
hybrid method is specifically studied on Exchange and Call on maximum Rainbow options.
In addition, this method is compared to the explicit finite difference method as the benchmark
and the results show that the proposed method can achieve a noticeably higher accuracy than
the benchmark method at a similar computational time. Furthermore, the stability of the pro-
posed hybrid method is numerically proved by considering the effect of the time step size to the
computational accuracy in solving these problems.

1. INTRODUCTION

The financial markets are becoming more complex with trading many types of financial
derivatives. A financial derivative is a contract with a value dependant on one or several under-
lying assets. The markets require updated values of these derivatives every second of the day,
so pricing methods need to be more efficient.

Options are some of the most common derivatives. There are two main types of options:
A call option gives its owner the right, but not the obligation, to buy some asset for a price
referred to as the exercise price or strike price until a specified time called the expiration time
of the option. The payoff of call option for strike price E and expiration time T is, payoff =
max(S − E, 0). A put option gives its owner the right, but not the obligation, to sell some
asset for an exercise price until the expiration time of the option. The payoff of this option for
strike price E and expiration time T defined by payoff = max(E − S, 0).

Furthermore, options are classified into European and American options. European options
can be exercised only on the expiration time, but American options can be exercised any time
on or before the expiration time.
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Black-Scholes [1] and Merton [2] introduced a parabolic partial differential equation (PDE)
that the price of the European option satisfies under certain assumption. During the last
decades, researchers have been presenting some numerical methods in order to solve Black-
Scholes equation such as finite difference method [3, 4, 5] and radial basis functions (RBFs)
method [6, 7, 8, 9, 10, 11]. See for more results [12, 13, 14, 15].

RBFs method is known as a powerful tool for interpolation of scattered data. The main
advantage of radial basis functions method, is its meshless characteristic. The simplicity of the
method and its ability to interpolate the scatterd data as well as its direct extension to higher
dimension has made this method an important subject of numerical solution of PDEs. There
are two kinds of RBFs, the picewise smooth and the infinitely smooth RBFs. Infinitely smooth
RBFs have a shape parameter c, as the shape parameter has significant effect on the acurracy
of the method, and the infinitely smooth RBFs can be spectrally accurate [16, 17]. Some well-
known RBFs are Gaussian (GA), Multiquadratic (MQ), Inverse Multiquadratic (IMQ) and Thin
plate spline (TPS), table 1.

TABLE 1. Some well-known RBFs

Name of function Definition
Infinitely smooth RBFs

Gaussian (GA) ϕ(r) = e−c
2r2

Inverse quadratic (IQ) ϕ(r) = (c2 + r2)−1

Multiquadric (MQ) ϕ(r) =
√
c2 + r2

Inverse Multiquadric (IMQ) ϕ(r) =
√
c2 + r2−1

Piecewise smooth RBFs
Linear ϕ(r) = r
Cubic ϕ(r) = r3

Thin plate spline (TSP) ϕ(r) = r2 log(r)

In this paper we applied RBFs in order to solve the two-asset Black-Scholes PDE for Ex-
change model and call on maximum model. In order to this purpose we use Multiquadratic
radial basis functions.

The rest of this paper is organized as follows: In section 2 we discuss multi-asset Black-
Sholes, and in special case the two-asset Black-Scholes PDE. In section 3, a proposed method
based on θ method and RBFs method for solving two-assets Black-Scholes PDE is presented.
In addition, stability and convergence of the proposed method are proved in section 4. Ex-
change option and call on maximum Rainbow option are introduced in section 5. The proposed
method is applied to solve these problems and their obtained numerical results are presented.
In addition, the effect of the time step size (∆t) and number of basis functions (N ) to the
computational accuracy of proposed method are studied.
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2. MULTI-ASSET BLACK-SCHOLES PDE

In the option market, various traded options are multi-asset options. The payoff of this group
of options depends on more than one underlying assets.
Consider a portfolio consisting, N underlying assets. Let Si be the price for asset i, i =
1, ..., N , in which each asset price follows a geometric Brownian motion

dSi = Si(µidt+ σidwi) i = 1, ..., N. (2.1)

where µi and σi for i = 1, ..., N are denotes the average rate of growth and volatility of asset
Si, respectively. Each dwi for i = 1, ..., N satisfies

E(dwi) = 0 and E(dw2
i ) = dt

The N Winner processes wi are correlated according to

dwidwj = ρijdt,

where ρ is the symmetric matrix

ρ =


1 ρ12 ρ13 · · · ρ1N

ρ12 1 ρ23 · · · ρ2N
...

...
... · · ·

...
ρ1N ρ2N ρ3N · · · 1

 .
So, we have

dSidSj = σiσjSiSjρijdt.

If the price for the option isU = U(S1, S2, ..., SN , t), the value Π of the risk-free self-financing
portfolio is given by

Π = U −
N∑
i=1

∆iSi,

where ∆i are the shares of each asset in the portfolio, then the increment is:

dΠ = dU −
N∑
i=1

∆idSi. (2.2)

Applying Ito’s lemma on the N-dimensional function U(S1, S2, ..., SN , t), we can write

dU =
N∑
i=1

σiSi
∂U

∂Si
dwi + (

∂U

∂t
+

N∑
i=1

µiSi
∂U

∂Si
+

N∑
i=1

N∑
j=1

1

2

∂2U

∂Si∂Sj
σiσjρSiSj)dt. (2.3)
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Substituting (2.3) and (2.1) into (2.2) gives

dΠ =

N∑
i=1

σiSi(
∂U

∂Si
−∆i)dwi + (

∂U

∂t
+

N∑
i=1

µiSi
∂U

∂Si

+

N∑
i=1

N∑
j=1

1

2

∂2U

∂Si∂Sj
σiσjρSiSj −

N∑
i=1

µi∆iSi)dt.

In order to eliminate the randomness of the portfolio Π, we set

∆i =
∂U

∂Si
, i = 1, ..., N.

The return of this portfolio should be equal to the return from risk-free intrest rate, which means

dΠ = (
∂U

∂t
+

N∑
i=1

N∑
j=1

1

2
σiσjρSiSj

∂2U

∂Si∂Sj
)dt = rΠdt.

Therefore
∂U

∂t
+

N∑
i=1

N∑
j=1

1

2
σiσjρSiSj

∂2U

∂Si∂Sj
= r(U −

N∑
i=1

Si
∂U

∂Si
).

Rearrenging the terms to get the N-dimensional Black-Scholes PDE,

∂U

∂t
+

N∑
i=1

N∑
j=1

1

2
σiσjρSiSj

∂2U

∂Si∂Sj
+

N∑
i=1

rSi
∂U

∂Si
− rU = 0

2.1. Two-asset Black-Scholes PDE. A two-asset option is a special case of multi-asset op-
tions, where the number of underlying asset is two. The two-asset Black-Scholes equation is a
two-dimensional parabolic PDE:

∂U

∂t
+

1

2
σ2

1S
2
1

∂2U

∂S2
1

+ σ1σ2ρS1S2
∂2U

∂S1∂S2
+

1

2
σ2

2S
2
2

∂2U

∂S2
2

+ rS1
∂U

∂S1
+ rS2

∂U

∂S2
− rU = 0,

where σ1 and σ2 are the volatility of assets S1 and S2, respectively, ρ is the correlation coeffi-
cient between S1 and S2 and r is the risk-free rate. E is the strike price and T is the expiration
time.
The solution domain is {S1 ∈ [0,∞), S2 ∈ [0,∞), t ∈ [0, T ]} and the final condition is:

U(S1, S2, T ) = payoff (S1, S2). (2.4)
From the change of variable τ = T − t, we obtain

∂U

∂τ
−1

2
σ2

1S
2
1

∂2U

∂S2
1

−σ1σ2ρS1S2
∂2U

∂S1∂S2
−1

2
σ2

2S
2
2

∂2U

∂S2
2

−rS1
∂U

∂S1
−rS2

∂U

∂S2
+rU = 0. (2.5)

Now, the final condition (2.4) becomes initial condition:

U(S1, S2, 0) = payoff (S1, S2).
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Two-asset options are usually classified into:
• Exchange option
• Spread option
• Basket option
• Rainbow option
In this paper we focus on Exchange and Rainbow options which will be described in section 5.

3. PROPOSED METHOD FOR TWO-ASSET OPTION PRICING

In this paper we consider two-asset Black-Scholes PDE

∂U

∂t
(x, y, t)− 1

2
σ2

1x
2∂

2U

∂x2
(x, y, t)− σ1σ2ρxy

∂2U

∂x∂y
(x, y, t)− 1

2
σ2

2y
2∂

2U

∂y2
(x, y, t)

− rx∂U
∂x

(x, y, t)− ry∂U
∂y

(x, y, t) + rU(x, y, t) = 0. (3.1)

The domain for each asset price is [0,+∞), but in a numerical method, we usually truncate
the domain to [0, L1] and [0, L2] respectively. The choice of L1 and L2 usually depends on the
evaluation area we are interested in.
We consider (3.1) with initial condition:

U(x, y, 0) = payoff (x, y), (3.2)

and boundary conditions:

U(0, y, t) = α(y, t),

U(L1, y, t) = β(y, t),

U(x, 0, t) = γ(x, t),

U(x, L2, t) = δ(x, t),

where α(y, t), β(y, t), γ(x, t) and δ(x, t) functions are consistent to the exact solution of (3.1).
We discretize the domain with N division in x-axis and y-axis, not necessarily uniform as

{xi}Ni=1and{yi}Ni=1, (3.3)

and M time steps, so interval [0, T ] is discretized with ∆t =
T

M
, that T denotes the expiration

time.
Now, we approximate function U with RBF method according to:

U(x, y, t) =
N2∑
i=1

λi(t)φi(x, y), (3.4)

where φ(x, y) = [ϕ(r1,1), ..., ϕ(r1,N ), ϕ(r2,1), ..., ϕ(r2,N ), ..., ϕ(rN,1), ..., ϕ(rN,N )],
ri,j =

√
(x− xi)2 + (y − yj)2 and ϕ is a radial basis function. By defining the operator

D = −1

2
σ2

1x
2 ∂

2

∂x2
− σ1σ2ρxy

∂2

∂x∂y
− 1

2
σ2

2y
2 ∂

2

∂y2
− rx ∂

∂x
− ry ∂

∂y
+ r,
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we can rewrite (3.1) to:
∂U

∂t
(x, y, t) +DU(x, y, t) = 0.

Using the θ method(
U(x, y, t+ ∆t)− U(x, y, t)

∆t
+O(∆t)

)
+ (1− θ)DU(x, y, t+ ∆t) + θDU(x, y, t) = 0,

(3.5)
where the parameter θ is chosen in interval [0, 1]. By rearranging (3.5) we have

[1 + (1− θ)∆tD]Un+1 = [1− θ∆tD]Un,

where Un = U(x, y, tn). Defining

A = 1 + (1− θ)∆tD and B = 1− θ∆tD,

we obtain
AUn+1 = BUn. (3.6)

By using RBF approximation, we find

Un+1 =

N2∑
i=1

λn+1
i φi(x, y), (3.7)

Un =
N2∑
i=1

λni φi(x, y). (3.8)

Substituting values from (3.7) and (3.8) into (3.6) for all interial and boundary points of collo-
cation points (3.3), we get the scheme in matrix form:

AΦλn+1 = BΦλn + gn+1, (3.9)

where Φ = [ϕ(ri,j)]
N
i,j=1 and gn+1 is a N2 × 1 vector, such that according to interial points its

components are equal to zero and its other componets are obtained by substituting boundary
points into their boundary conditions.
Subsequently (3.9) can be written as

λn+1 = (AΦ)−1(BΦ)λn + (AΦ)−1gn+1.

So,
λn+1 = Hλn +G, (3.10)

where H = (AΦ)−1(BΦ) and G = (AΦ)−1gn+1,
from (3.4) and (3.10) it follows that

Un+1 = ΦHΦ−1Un + ΦGn+1. (3.11)

In above relation U0 vector is obtained using initial condition (3.2).
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4. THE CONVERGENCE OF THE PROPOSED METHOD

In this section, we prove the convergence of the scheme (3.11).
We define matrix E = ΦHΦ−1. The components of the matrix E depends on the constant

γ =
∆t

hs
, where h is the distance between any two nodes, and s is the highest order of partial

differential operator, where s is equal to 2 for mentioned problem (3.1).
We know that |Ut(x, y) − ut(x, y)| ≤ βlh

l−1|u|Nϕ(Ω), where l ∈ N, Nϕ(Ω) is a native space
of RBF ϕ and un(x, y) is the exact solution of (3.1) at time n∆t. [18]
We assume that (3.11) is accurate of order p, it yields that

un+1 = ΦHΦ−1un + ΦGn+1 +O((∆t) + hp), ∆t→ 0, h→ 0,∀n (4.1)

Now we define en(x, y) = un(x, y)− Un(x, y). By subtracting (3.11) from (4.1) we get:

en+1 = Een +O((∆t) + hp), ∆t→ 0, h→ 0

By Lax-Richtmyer definiton of convergency the scheme in (3.11) is convergent if

‖E‖ ≤ 1, (4.2)

hence, there exist a constant η such that

‖en+1‖ ≤ ‖E‖‖en‖+ η((∆t) + hp).

It is seen that e0 = 0, using the initial condition. So we have

‖en+1‖ ≤
(
1 + ‖E‖+ ‖E‖2 + ...+ ‖E‖n

)
η((∆t) + hp).

By considering the convergency condition (4.2), we obtain

‖en+1‖ ≤ (n+ 1)η((∆t) + hp).

So convergence of the scheme is proved.

5. IMPLEMENTATION OF THE PROPOSED METHOD

In this section we introduce Exchange and Rainbow options. The numerical solutions for
them are further considered using the proposed method.

5.1. Exchange option. Exchange option is usually used in energy market.The payoff of this
option is:

payoff = max(S1 − S2, 0). (5.1)

Since there is no strike price term, the classification of call and put option is not used for this
option.
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There are various types of boundary conditions, in this paper we consider the following:

U(0, S2, t) = 0, 0 ≤ S2 ≤ L2, 0 < t ≤ T, (5.2)

U(L1, S2, t) = max(L1 − S2e
−r(T−t), 0), 0 ≤ S2 ≤ L2, 0 < t ≤ T, (5.3)

U(S1, 0, t) = S1, 0 < S1 < L1, 0 < t ≤ T, (5.4)

U(S1, L2, t) = max(S1 − L2e
−r(T−t), 0), 0 < S1 < L1, 0 < t ≤ T. (5.5)

An analytical solution formula to two-asset Black-Scholes equation for Exchange option was
introduced by Margrabe[19]. The exact solution is as bellow:

C(S1, S2, t) = S1N(d1)− S2N(d2),

where

d1 =
ln(

S1

S2
) + (r +

1

2
σ2)(T − t)

σ
√
T − t

, d2 =
ln(

S2

S1
)− (r +

1

2
σ2)(T − t)

σ
√
T − t

= d1 − σ
√
T − t,

σ =
√
σ2

1 + σ2
2 − 2ρσ1σ2 N(d) =

1√
2π

∫ d

−∞
e
−
z2

2 dz.

The numerical solutions of Exchange option using proposed method is presented in next sec-
tion.

5.1.1. An example of Exchange option. In this section, we consider PDE (2.5) with initial
condition (5.1) and boundary conditions (5.2)-(5.5), when

σ1 = σ2 = 0.2, T = 0.5, ρ = 0.1, r = 0.1, L1 = L2 = 40

In order to use the proposed method, we suppose N = 10,M = 30 and θ = 0.5. This problem
is solved by the proposed method by MQ RBF and appropriate shape parameter. The results
of the proposed method and the explicit finite difference method as benchmark, are shown in
table 2. It can be seen that the proposed method has higher accuracy than the explicit finite
difference method. Interestingly, the computational time of the proposed method (0.1S) is less
than the benchmark method (3.6S).

TABLE 2. Results for Exchange option example

S1 S2 Approx by proposed method Approx by explicite FDM Exact solution
N = 10, θ = 0.5 ∆S = 0.4,∆t = 0.005

4 8 9.404495358567× 10−5 7.588127497265× 10−5 9.404893887087× 10−5

8 16 1.880976487882× 10−4 5.650924067118× 10−5 1.8809787777417× 10−4

10 4 6.195082338527 6.000000541463 6.195082339727
16 16 1.610562395741 1.207223681520 1.610562395729
20 16 4.891152587957 4.198831239879 4.891152587955
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In case of S1 = 16, S2 = 16 the effect of the time step size (∆t) to the computational accuracy
is shown in Fig. 1 , and the results, numerically, confirm the stability of the proposed method.

FIGURE 1. Variation of the absolute error with ∆t in Exchange option example

The exact solution and the approximate solution in the case of N = 10, S1 = 16 and different
values of S2 are shown in Fig. 2. It can be seen that the exact solution and the approximate
solution are almost the same.

FIGURE 2. The exact solution and the approximate solution in the case of
N = 10, S1 = 16
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Absolute errors in the case of S1 = 20 and different values of S2 for N = 10, N = 8, N = 6
are shown in Fig. 3.

FIGURE 3. Absolute errors in the case of S1 = 20 for N = 10, N = 8, N = 6

5.2. Rainbow option. Rainbow option is based on a combination of various assets like a rain-
bow is a combination of various colors. There are different forms of Rainbow option. Some of
the typical models of Rainbow options and their payoffs are listed in table 3.

TABLE 3. Examples of Rainbow option

Name payoff
Multi-asset Rainbow option max(S1 − E1, S2 − E2, 0)

Pyramid Rainbow option max(|S1 − E1|+ |S2 − E2| − E, 0)
Max option max(S1, S2)

Call on maximum option max(max(S1, S2)− E, 0)
Put on maximum option max(E −max(S1, S2), 0)
Call on minimum option max(min(S1, S2)− E, 0)
Put on minimum option max(E −min(S1, S2), 0)

For more details refer to[20, 21, 22].
In this paper we consider call on maximum option. The boundary conditions are:
� C(0, 0, t) = 0.
� If S1 = 0 and S2 6= 0, the option value C depends only on S2 and t:

∂C

∂t
(S2, t)−

1

2
σ2

2S
2
2

∂2C

∂S2
2

(S2, t)− rS2
∂C

∂S2
(S2, t) + rC(S2, t) = 0.
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� If S1 6= 0 and S2 = 0, the option value C depends only on S1 and t:

∂C

∂t
(S1, t)−

1

2
σ2

1S
2
1

∂2C

∂S2
1

(S1, t)− rS1
∂C

∂S1
(S1, t) + rC(S1, t) = 0.

� If S1 →∞ and S2 →∞, the option value is approximately equal to S1 or S2.
� If S1 →∞ and S2 is finite, the option value is approximately equal to S1.
� If S1 is finite and S2 →∞, the option value is approximately equal to S2.
The exact solution is:

C(S1, S2, t) = S1[N(δ1)−N ′(−d1, δ1, ρ1)] + S2[N(δ2)−N ′(−d2, δ2, ρ2)]

+ Ee−r(T−t)N ′(−d1 + σ1

√
T − t,−d2 + σ2

√
T − t, ρ)− Ee−r(T−t),

where

d1 =
ln(

S1

E
) + (r +

1

2
σ2

1)(T − t)

σ1

√
T − t

, d2 =
ln(

S2

E
) + (r +

1

2
σ2

2)(T − t)

σ2

√
T − t

,

δ1 =
ln(

S1

S2
) + (

1

2
σ2)(T − t)

σ
√
T − t

, δ2 =
ln(

S2

S1
) + (

1

2
σ2)(T − t)

σ
√
T − t

,

ρ1 =
ρσ2 − σ1

σ
ρ2 =

ρσ1 − σ2

σ
σ =

√
σ2

1 + σ2
2 − 2ρσ1σ2

N(δ) =
1√
2π

∫ δ

−∞
e
−
z2

2 dz.

N ′(d, δ, ρ) =
1

2π
√

1− ρ2

∫ d

−∞

∫ δ

−∞
e
−
x2 − 2ρxy + y2

2(1− ρ2) dxdy.

The numerical solutions for call on maximum option are discussed in rest of this paper.

5.2.1. An example of call on maximum option. Here we consider PDE (2.5) with initial and
boundary conditions consistent with Call on maximum Rainbow option when

E = 10, σ1 = σ2 = 0.2, T = 0.5, ρ = 0.1, r = 0.1, L1 = L2 = 40

In order to use the proposed method we suppose N = 10,M = 30 and θ = 0.5. This problem
is solved by the proposed method by MQ RBF and appropriate shape parameter. The results
of the proposed method and the explicit finite difference method as benchmark, are shown in
table 4, which is shown the high accuracy of the proposed method. The computational time of
the proposed method (1.4S) is less than the benchmark method (3.6S).
In case of S1 = 20, S2 = 8 the effect of the time step size (∆t) to the computational accuracy
is shown in Fig. 4 .
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TABLE 4. Results for a Call on maximum option example

S1 S2 Approx by proposed method Approx by explicite FDM Exact solution
N = 10, θ = 0.5 ∆S = 0.4,∆t = 0.005

4 8 0.065720085208 0.065795946004 0.065720085211
8 16 6.487819019705 6.487863495039 6.487819019515

10 4 0.827780396052 0.822091299757 0.827780396011
16 16 7.696995177509 7.694959078947 7.696995177078
20 8 10.487706098473 10.487772099135 10.487706094291
20 16 10.687059187097 10.686378201908 10.687059187049

FIGURE 4. Variation of the absolute error with ∆t in Call on maximum option example

The exact solution and the approximate solution in the case of N = 10, S2 = 20 and different
values of S1 are shown in Fig. 5. It can be observed that our numerical result are in excellent
alignment with the corresponding exact solution.
Absolute errors in the case of S2 = 16 and different values of S1 for N = 10, N = 8, N = 6
are shown in Fig. 6.

6. CONCLUSION

Two-asset options whose payoff depends on two underlying assets, usually, are categorized
into: Exchange, Spread, Basket and Rainbow options. An important way for evaluating these
options is to solve two-asset Black-Scholes PDE (3.1). In this paper, an efficient hybrid numer-
ical method for solving PDE (3.1) was introduced based on the Crank-Nicolson and the radial
basis functions methods. Furthermore, the convergence of the proposed method were proved.
The proposed method were used for pricing of Exchange and Rainbow options. The merit of



A METHOD FOR THE TWO-ASSET BLACK-SCHOLES PDE 105

FIGURE 5. The exact solution and the approximate solution in the case of
N = 10, S2 = 20

FIGURE 6. Absolute errors in the case of S2 = 16 for N = 10, N = 8, N = 6

the proposed hybrid method is its ability to achieve high accuracy without the need to use high
computational cost. Furthermore, the effect of the time step size of this method on the compu-
tational accuracy was studied and the results confirmed that by reducing the length of the time
step size, the error of the method decreases rapidly. Also, it can be observed that our numerical
result are in excellent alignment with the corresponding exact solution.The mentioned method
can easily be extended to obtain the price of the other two-asset options.
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