Browse > Article
http://dx.doi.org/10.12989/sem.2005.20.4.405

Efficient geometric nonlinear analyses of circular plate bending problems  

Duan, Mei (School of Civil and Environmental Engineering, The University of New South Wales)
Publication Information
Structural Engineering and Mechanics / v.20, no.4, 2005 , pp. 405-420 More about this Journal
Abstract
In this paper, a hybrid/mixed nonlinear shell element is developed in polar coordinate system based on Hellinger/Reissner variational principle and the large-deflection theory of plate. A numerical solution scheme is formulated using the hybrid/mixed finite element method (HMFEM), in which the nodal values of bending moments and the deflection are the unknown discrete parameters. Stability of the present element is studied. The large-deflection analyses are performed for simple supported and clamped circular plates under uniformly distributed and concentrated loads using HMFEM and the traditional displacement finite element method. A parametric study is also conducted in the research. The accuracy of the shell element is investigated using numerical computations. Comparisons of numerical solutions are made with theoretical results, finite element analysis and the available numerical results. Excellent agreements are shown.
Keywords
circular plate; geometric nonlinear; hybrid/mixed finite element;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Bathe, K.J. (2001), 'The inf-sup condition and its evaluation for mixed finite element methods', J Comput. Struct., 79, 243-252   DOI   ScienceOn
2 Chia, C.Y. (1980), Nonlinear Analysis of Plates, McGraw-Hill
3 Dumir, P.C. (1987), 'Circular plates on pasternak elastic foundations', Int. J. Numer. Anal. Methods Geomech., 11(1), 51-60   DOI   ScienceOn
4 Dumir, P.C. and Shingal, L. (1986), 'Nonlinear analysis of thick circular plates', J. Eng. Mech., 112(3),260-272   DOI   ScienceOn
5 Hitoshi, W. (1980), 'Nonlinear analysis of plates and shells by the incremental procedure using a mixed model of the finite element method', Bulletin of the JSME. 23(186), 1945-1951   DOI   ScienceOn
6 Hong, T (1999), 'Axisymmetric shells and plates on tensionless elastic foundations', Int. J. Solids Struct., 36(34), 5277-5300   DOI   ScienceOn
7 Khathlan, A.A. (1994), 'Large-deformation analysis of plates on unilateral elastic foundation', J. Eng. Mech., 120(8), 1820-1827   DOI   ScienceOn
8 Kohnke, P. (1998), Theory Manual. Houston, PA. USA: ANSYS, Inc
9 Kondo, K. and Pian, T.H.H. (1981) 'Large deformations of rigid-plastic circular plates', Int. J. Solids Struct., 17(11) 1043-1055   DOI   ScienceOn
10 Kraytennan, B.L. and Fu, C.C. (1985), 'Nonlinear analysis of clamped circulars', J. Struct. Eng., 111(11), 2402-2415   DOI   ScienceOn
11 Michiya, K. (1993) 'Strain analysis of 3-dimensional elastic large deformation for a thick circular plate by convected coordinates (comparison with the classical plate theory), Nippon Kikai Gakkai Ronbunshu', A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 59(561), 1232-1237   DOI
12 Pian, T.H.H. (1964), 'Derivation of element stiffness matrices by assumed stress distributions', AIAA 7, 1333-1335
13 Pian, T.H.H. (1976), 'Variational principle for incremental finite element methods', Journal of The Franklin Institute, 302(5 & 6), 473-488   DOI   ScienceOn
14 Pian, TH.H. (1996), 'Survey of hybrid/mixed finite element methods for plate and shell analysis', Third Asian Pacific Conf. on Computational Mechanics, 227-232
15 Sansour, C. and Kollmann, F.G. (2000), 'Families of 4-node and 9-node finite elements for a finite deformation shell theory', Comput. Mech., 24, 435-447   DOI
16 Stippes, M. and Hausrath, A.H. (1952), 'Large deflections of circular plates', Trans. ASME, J. Appl. Mech., 19, 187-292
17 Vallabhan, C.V (1994), 'Parametric study of axisymmetric circular-glass plates', J. Struct. Eng., 120(5), 16631671.   DOI   ScienceOn
18 Takezono, S. (1980), 'Elasto/viscoplastic analysis of thin circular plates under large strains and large deformations', J. Appl. Mech., Transactions ASME, 47(4), 741-747   DOI
19 Timoshenko, S. and Woinowsky-Kreiger, S. (1959), Theory of Plates and Shells, McGraw-Hill New York
20 Turvey, G.J. and Salehi, M. (1997), 'Circular plates with one diametral stiffener - an elastic large deflection analysis', Comput. Struct., 63(4), 775-783   DOI   ScienceOn
21 Well,NA and Newmark, N.M. (1956), 'Large deflection of elliptical plates', Trans. ASME, J. Appl. Mech., 23, 21-26
22 Duan, M., Miyamoto, Y., Iwasaki, S. and Deto, H. (1998), 'Hybrid/mixed finite element analysis of circular plate bending based on Reissner-Mindlin theory', J of Structural and Construction Engineering (JSCE), 44A, 323-330
23 Babusa, I. (1973), 'The finite element method with Largrange multipliers', Numer. Math., 20, 179-192   DOI
24 Szilard, R. (1974), Theory and Analysis ofPlates, Prentice-Hall, INC. Englewood Cliffs, New Jersey